
This paper is included in the Proceedings of the
14th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’17).
March 27–29, 2017 • Boston, MA, USA

ISBN 978-1-931971-37-9

Open access to the Proceedings of the
14th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

A System to Verify Network Behavior
of Known Cryptographic Clients

Andrew Chi, Robert A. Cochran, Marie Nesfield, Michael K. Reiter,
and Cynthia Sturton, The University of North Carolina at Chapel Hill

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/chi

A System to Verify Network Behavior of Known Cryptographic Clients

Andrew Chi Robert A. Cochran Marie Nesfield Michael K. Reiter Cynthia Sturton
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

Numerous exploits of client-server protocols and appli-
cations involve modifying clients to behave in ways that
untampered clients would not, such as crafting malicious
packets. In this paper, we develop a system for verifying
in near real-time that a cryptographic client’s message
sequence is consistent with its known implementation.
Moreover, we accomplish this without knowing all of
the client-side inputs driving its behavior. Our toolchain
for verifying a client’s messages explores multiple can-
didate execution paths in the client concurrently, an in-
novation useful for aspects of certain cryptographic pro-
tocols such as message padding (which will be permitted
in TLS 1.3). In addition, our toolchain includes a novel
approach to symbolically executing the client software
in multiple passes that defers expensive functions until
their inputs can be inferred and concretized. We demon-
strate client verification on OpenSSL and BoringSSL to
show that, e.g., Heartbleed exploits can be detected with-
out Heartbleed-specific filtering and within seconds of
the first malicious packet. On legitimate traffic our ver-
ification keeps pace with Gmail-shaped workloads, with
a median lag of 0.85s.

1 Introduction

Tampering with clients in client-server protocols or ap-
plications is an ingredient in numerous abuses. These
abuses can involve exploits on the server directly, or ma-
nipulation of application state for which the client is au-
thoritative. An example of the former is the high-profile
Heartbleed [14] vulnerability, which enabled a tampered
SSL client to extract contents of server memory. An ex-
ample of the latter is an “invalid command” game cheat
that permits a client greater powers in the game [36].

The ideal defense would be to implement formally
verified servers that incorporate all necessary input val-
idation and application-specific checking. However,

in practice, current production servers have codebases
too large to retrofit into a formally verified model (see
Sec. 2). Take for example the continued discovery of crit-
ical failures of input validation in all major implementa-
tions of Transport Layer Security (TLS) [24]. Despite
extensive review, it has been difficult to perfectly imple-
ment even “simple” input validation [28], let alone all
higher-level program logic that could affect authentica-
tion or could compromise the integrity and confidential-
ity of sensitive data [27].

Since it is generally impossible to anticipate all such
abuses, in this paper we explore a holistic approach to
validating client behavior as consistent with a sanctioned
client program’s source code. In this approach, a behav-
ioral verifier monitors each client message as it is de-
livered to the server, to determine whether the sequence
of messages received from the client so far is consistent
with the program the client is believed to be running and
the messages that the server has sent to the client (Fig. 1).
Performing this verification is challenging primarily be-
cause inputs or nondeterministic events at the client may
be unknown to the verifier, and thus, the verifier must de-
duce (via a solver) whether there exist inputs that could
have driven the client software to send the messages it
did. Furthermore, some of those inputs may be protected
by cryptographic guarantees (private keys in asymmetric
cryptography), and maliciously crafted fields may them-
selves be hidden by encryption, as with Heartbleed.

Given:
P : Client Program
M : Network Message

Not Given:
I : Client Inputs

Question:
Could P have
produced M ?

Legitimate

Potentially
Malicious

YES

NO

✓

X

Figure 1: Abstracted behavioral verification problem.

Our central contribution is to show that legitimate
cryptographic client behavior can in fact be verified, not
against a simplified protocol model but against the client

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 177

source code. Intuitively, we limit an attacker to only
behaviors that could be effected by a legitimate client.
We believe this advance to be important: in showing that
messages from a client can be quickly verified as legit-
imate or potentially malicious, we narrow the time be-
tween zero-day exploit and detection to mere seconds.
This is significant, since in the case of Heartbleed, for
example, the bug was introduced in March 2012 and dis-
closed in April 2014, a window of vulnerability of two
years. During this time, few production networks were
even monitoring the relevant TLS Heartbeat records, let
alone were configured to detect this misbehavior.

Our examination of 70 OpenSSL CVEs from 2014-
2016 showed that 23 out of 37 TLS/DTLS server-side
vulnerabilities required tampering with feasible client
behavior as an ingredient in exploitation. The vulnera-
bilities comprised input validation failures, memory er-
rors, data leaks, infinite loops, downgrades, and invalid
authorization. Our technique accomplishes verification
with no vulnerability-specific configuration and, indeed,
could have discovered all of these client exploit attempts
even prior to the vulnerabilities’ disclosure.

Following several other works in verification of client
messages when some client-side values are unknown
(see Sec. 2), our strategy is to use symbolic execution [7]
to trace the client execution based on the messages re-
ceived so far from the client (and the messages the server
has sent to it). When the verifier, in tracing client execu-
tion, operates on a value that it does not know (a “sym-
bolic” value), it considers all possibilities for that value
(e.g., branching in both directions if a branch statement
involves a symbolic variable) and records constraints
on those symbolic values implied by the execution path
taken. Upon an execution path reaching a message send
point in the client software, the verifier reconciles the
accumulated constraints on that execution path with the
next message received from the client. If the path does
not contradict the message, then the message is con-
firmed as consistent with some valid client execution.

We advance this body of research in two ways.
1. Prior research on this form of client verification has

primarily focused on carefully prioritizing candidate
paths through the client in the hopes of finding one
quickly to validate the message trace observed so far.
This prioritization can itself be somewhat expensive
(e.g., involving edit-distance computations on exe-
cution paths) and prone to error, in which case the
verifier’s search costs grow dramatically (e.g., [10]).
Here we instead use parallelism to explore candi-
date paths concurrently, in lieu of sophisticated path
prediction. In Sec. 6, we highlight one aspect of
cryptographic protocols for which efficiently validat-
ing client-side behavior depends on being able to ex-
plore multiple execution fragments in parallel, namely

execution fragments reflecting plaintexts of different
sizes, when the true plaintext size is hidden by mes-
sage padding (as in SSH and draft TLS 1.3). In this
case, predicting the plaintext length is not possible
from the ciphertext length, by design, and so explor-
ing different candidate lengths in parallel yields sub-
stantial savings.

2. When verifying the behavior of a client in a cryp-
tographic protocol such as TLS, the search for a
client execution path to explain the next client mes-
sage can be stymied by paths that contain crypto-
graphic functions for which some inputs are unknown
(i.e., symbolic). The symbolic execution of, e.g.,
the AES block cipher with an unknown message or
a modular exponentiation with an unknown expo-
nent is simply too costly. Every message-dependent
branch in the modular exponentiation routine would
need to be explored, and the large circuit representa-
tion of AES would result in unmanageably complex
formulas. In Sec. 5 we thus describe a multi-pass
algorithm for exploring such paths, whereby user-
specified “prohibitive” functions are bypassed tem-
porarily until their inputs can be deduced through rec-
onciliation with the client message; only then is the
function explored (concretely). In cases where those
inputs can never be inferred—as would be the case for
an ephemeral Diffie-Hellman key, for example—the
system outputs the assumption required for the verifi-
cation of the client message to be correct, which can
be discharged from a whitelist of assumptions. Aside
from these assumptions, our verification is exact: the
verifier accepts if and only if the client is compliant.
Our technique, while not completely turnkey, does not

require detailed knowledge of the protocol or applica-
tion being verified. For example, the specification of pro-
hibitive functions and a matching whitelist of permissi-
ble assumptions is straightforward in our examples: the
prohibitive functions are simply the AES block cipher,
hash functions, and elliptic curve group operations; and
the whitelist amounts to the assumption that a particu-
lar value sent by the client is in the elliptic-curve group
(which the server is required to check [26]). Aside from
specifying the prohibitive functions and the whitelist, the
other needed steps are identifying network send and re-
ceive points, minor syntactic modifications to prepare the
client software for symbolic execution (see Appendix B),
and, optionally, “stubbing out” calls to software that are
irrelevant to the analysis (e.g., printf). In the case of
validating TLS client behavior, we also leverage a com-
mon diagnostic feature on servers: logging session keys
to enable analysis of network captures.

We show that client verification can coarsely keep
pace with a workload equivalent to an interactive Gmail
session running over TLS 1.2, as implemented by

178 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

OpenSSL and BoringSSL. Verification averages 49ms
per TLS record on a 3.2GHz processor, with 85% com-
pleting within 36ms and 95% completing within 362ms.
Taking into account the bursts of network activity in
Gmail traffic, and that a client-to-server record can-
not begin verification until all previous client-to-server
records are verified, the median verification lag between
the receipt of a client-to-server record and its successful
verification is 0.85s. We also show that our technique
similarly keeps pace with TLS 1.2 connections modified
to use message padding, a draft TLS 1.3 [30] feature that
introduces costs that our parallel approach overcomes.

Our verifier compares client messages against a spe-
cific client implementation, and so it is most appropriate
in scenarios where an expected client implementation is
known. For example, while a plethora of TLS implemen-
tations exist on the open internet, only a few TLS clients
are likely to be part of a corporate deployment where in-
stalled software is tightly controlled. Knowledge of the
implementation might also arise by the client revealing
its identification string explicitly (e.g., SSH [38]) or by
particulars of its handshake (e.g., TLS [1]). That said,
we have also made progress on generalizing our verifier
to apply across multiple minor revisions (see Sec. 7).

2 Related Work

The most closely related work is due to Bethea et al. [3]
and Cochran and Reiter [10]. These works develop al-
gorithms to verify the behavior of (non-cryptographic)
client applications in client-server settings, as we do
here. Bethea et al. adopted a wholly offline strategy,
owing to the expense of their techniques. Cochran and
Reiter improved the method by which a verifier searches
for a path through the client program that is consistent
with the messages seen by the verifier so far. By lever-
aging a training phase and using observed messages to
provide hints as to the client program paths that likely
produced those messages, their technique achieved im-
proved verification latencies but still fell far short of be-
ing able to keep pace with, e.g., highly interactive games.
Their approach would not work for cryptographic pro-
tocols such as those we consider here, since without
substantial protocol-specific tuning, the cryptographic
protections would obscure information in messages on
which their technique depends for generating these hints.

Several other works have sought to verify the behavior
of clients in client-server protocols. Most permit false
rejections or acceptances since they verify client behav-
ior against an abstract (and so imprecise) model of the
client program (e.g., [16, 17]), versus an actual client
program as we do here. Others seek exact results as we
do, but accomplish this by modifying the client to send
all inputs it processes to the verifier, allowing the verifier

to simply replay the client on those inputs [34]. In our
work, we verify actual client implementations and intro-
duce no additional messaging overhead. Proxies for in-
ferring web-form parameter constraints when a web form
is served to a client, to detect parameter-tampering at-
tacks when the form values are returned [32], also pro-
vide exact detection. However, this work addresses only
stateless clients and does so without attention to cryp-
tographically protected traffic. Our work permits stateful
clients and specifically innovates to overcome challenges
associated with cryptographic protocols.

Also related to our goals are works focused on veri-
fying the correctness of outsourced computations. Re-
cent examples, surveyed by Walfish and Blumberg [35],
permit a verifier to confirm (probabilistically) that an un-
trusted, remote party performed the outsourced computa-
tion correctly, at a cost to the verifier that is smaller than
it performing the outsourced computation itself. Since
we approach the problem from the opposite viewpoint
of a well-resourced verifier (e.g., running with the server
in a cloud that the server owner trusts), our techniques
do not offer this last property. However, ours requires
no changes to the party being verified (in our case, the
client), whereas these other works increase the computa-
tional cost for the party being verified by orders of mag-
nitude (e.g., see [35, Fig. 5]). Another area of focus in
this domain has been reducing the privacy impact of the
extra information sent to the verifier to enable verifica-
tion (e.g., [29]). Since our technique does not require
changes to the messaging behavior of the application at
all, our technique does not suffer from such drawbacks.

More distantly related is progress on proving security
of reference implementations of cryptographic protocols
relative to cryptographic assumptions (e.g., miTLS, a ref-
erence implementation of TLS in F# [5]) or of modules
that can be incorporated into existing implementations to
ensure subsets of functionality (e.g., state-machine com-
pliance [4]). Our work instead seeks to prove a property
of the messages in an interaction, namely that these mes-
sages are consistent with a specified client implementa-
tion. As such, our techniques show nothing about the
intrinsic security of the client (or server) implementation
itself; nevertheless, they are helpful in detecting a broad
range of common exploit types, as we show here. Our
techniques are also immediately applicable to existing
production protocol implementations.

3 Background and Goals

A client-server protocol generates messages msg0, msg1,
. . ., some from the client and some sent by the server. Our
goal is to construct a verifier to validate the client behav-
ior as represented in the message sequence; the server
is trusted. We assume that the client is single-threaded

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 179

and that the message order reflects the order in which the
client sent or received those messages, though neither of
these assumptions is fundamental. 1 Our technique is not
dependent on a particular location for the verifier, though
for the purposes of this paper, we assume it is near the
server, acting as a passive network tap.

Borrowing terminology from prior work [10], the task
of the verifier is to determine whether there exists an exe-
cution prefix of the client that is consistent with the mes-
sages msg0,msg1, . . ., as defined below.

Definition 1. Execution Prefix. An execution prefix Π

is a sequence of client instructions that begins at the
client entry point and follows valid branching behavior
in the client program. The sequence may include calls to
POSIX send() and recv(), which are considered “net-
work I/O instructions” and denoted SEND and RECV.

Definition 2. Consistency. An execution prefix Πn is
consistent with msg0, msg1, . . ., msgn, iff:
• Πn contains exactly n + 1 network I/O instructions
{γ0, ...,γn}, with possibly other instructions.

• ∀i ∈ {0, . . . ,n}, direction(γi) matches the direction of
msgi, where direction(SEND) is client-to-server and
direction(RECV) is server-to-client.

• The branches taken in Πn were possible under the
assumption that msg0, msg1,. . ., msgn were the mes-
sages sent and received.

Consistency of Πn with msg0, msg1,. . ., msgn requires
that the conjunction of all symbolic postconditions at
SEND instructions along Πn be satisfiable, once con-
cretized using contents of messages msg0, msg1,. . ., msgn
sent and received on that path.

The verifier attempts to validate the sequence msg0,
msg1, . . . incrementally, i.e., by verifying the sequence
msg0, msg1, . . ., msgn starting from an execution pre-
fix Πn−1 found to be consistent with msg0, msg1, . . .,
msgn−1, and appending to it an execution fragment that
yields an execution prefix Πn consistent with msg0,
msg1, . . ., msgn. Specifically, an execution fragment is
a nonempty sequence of client instructions (i) beginning
at the client entry point, a SEND, or a RECV in the client
software, (ii) ending at a SEND or RECV, and (iii) hav-
ing no intervening SEND or RECV instructions. If there
is no execution fragment that can be appended to Πn−1
to produce a Πn consistent with msg0, msg1, . . ., msgn,
then the search resumes by backtracking to find another

1The verifier can optimistically assume the order in which it ob-
serves the messages is that in which the client sent or received them,
which will often suffice to validate a legitimate client even if not strictly
true, particularly when the client-server protocol operates in each direc-
tion independently (as in TLS). In other cases, the verifier could explore
other orders when verification with the observed order fails. Moreover,
several works (e.g., [8, 2]) have made progress on symbolic execution
of multi-threaded programs.

execution prefix Π̂n−1 consistent with msg0, msg1, . . .,
msgn−1, from which the search resumes for an execution
fragment to extend it to yield a Π̂n consistent with msg0,
msg1, . . ., msgn. Only after all such attempts fail can the
client behavior be declared invalid.

Determining if a program can output a given value is
only semidecidable (recursively enumerable); i.e., while
valid client behavior can be declared as such in finite
time, invalid behavior cannot, in general. Thus, an “in-
valid” declaration may require a timeout on the verifi-
cation process.2 However, our primary concern in this
paper is verifying the behavior of valid clients quickly.

4 Parallel Client Verification

As discussed above, upon receipt of message msgn, the
verifier searches for an execution fragment with which to
extend execution prefix Πn−1 (consistent with msg0, . . .,
msgn−1) to create an execution prefix Πn that is consis-
tent with msg0, . . ., msgn. Doing so at a pace that keeps
up with highly interactive applications remains a chal-
lenge (e.g., [10]). We observe, however, that multiple
execution fragments can be explored concurrently. This
permits multiple worker threads to symbolically execute
execution fragments simultaneously, while coordinating
their activities through data structures to ensure that they
continue to examine new fragments in priority order. In
this section, we give an overview of our parallel verifica-
tion algorithm; this algorithm is detailed in Appendix A.

In this algorithm, a state σ represents a snapshot of
execution in a virtual machine, including all constraints
(path conditions) and memory objects, which include the
contents (symbolic or concrete) of registers, the stack
and the heap. We use σ.cons to represent the constraints
accumulated during the execution to reach σ, and σ.nxt
to represent the next instruction to be executed from σ.

The verifier produces state σn by symbolically executing
the execution prefix Πn.

The algorithm builds a binary tree of Node objects.
Each node nd has a field nd.path to record a path of in-
structions in the client; a field nd.state that holds a sym-
bolic state; children fields nd.child0 and nd.child1 that
point to children nodes; and a field nd.saved that will be
described in Sec. 5. The tree is rooted with a node nd
holding the state nd.state = σn−1 and nd.path = Πn−1.
The two children of a node nd in the tree extend nd.path
through the next symbolic branch (i.e., branch instruc-
tion with a symbolic condition). One child node holds
a state with a constraint that maintains that the branch
condition implies false, and the other child node’s state
holds a constraint that indicates that the branch condition

2Nevertheless, our tool declares our tested exploit traces as invalid
within several seconds, after exhaustive exploration of the state space.
See Sec. 6.1.

180 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

PQ

PR

PS

PT

!"#$

1-:$'HF7$5

6%M/%*

N--*

J$/:

D"#$

U<*"#$

Figure 2: Example node tree.

is true. The algorithm succeeds by finding a fragment
with which to extend Πn−1 to yield Πn if, upon extend-
ing a path, it encounters a network I/O instruction that
yields a state with constraints that do not contradict msgn
being the network I/O instruction’s message.

The driving goal of our algorithm is to enable concur-
rent exploration of multiple states in the node tree. To
this end, our algorithm uses multiple threads; one exe-
cutes a node scheduler and the others are worker threads,
each assigned to one node in the node tree at a time (cho-
sen by the node scheduler, which manages the prioritized
heap of unassigned nodes). Fig. 2 shows an example as-
signment of four workers to multiple nodes in a node tree
rooted at σn−1. White nodes with dashed outlines are
dead and represent intermediate states that no longer ex-
ist. A node is dead if its accumulated constraints reach a
contradiction or it has generated children nodes and de-
livered them to the node scheduler. Black nodes are ac-
tive and are currently being explored by worker threads.
Dark-gray nodes are being prioritized by the node sched-
uler and are still live. If there are worker threads that are
ready to process a node, they will take their next node
from a prioritized queue of the live nodes. Light-gray
nodes are infant nodes that have just been produced by a
worker thread and not yet prioritized by the node sched-
uler. We can see that worker W4 recently hit a symbolic
branch condition and created two infant nodes. The other
workers are likely processing straight-line code.

In our design and experiments, the number of worker
threads is a fixed parameter provided to the verifier. Be-
cause the verification task is largely CPU-bound, in our
experience it is not beneficial to use more worker threads
than the number of logical CPU cores, and in some cases,
fewer worker threads than cores are necessary.

5 Multipass Client Verification

Concurrent exploration of execution fragments can be
highly beneficial to the speed of validating legitimate
client behavior in cryptographic protocols, as we will
show in Sec. 6.3. Nevertheless, there remain chal-

lenges to verifying cryptographic clients that no reason-
able amount of parallelization can overcome, since doing
so would be tantamount to breaking some of the under-
lying cryptographic primitives. In this section, we intro-
duce a strategy for client verification that can overcome
these hurdles for practical protocols such as TLS.

The most obvious challenge is encrypted messages. To
make sense of these messages, the verifier needs to be
given the symmetric session key under which they are en-
crypted. Fortunately, existing implementations of, e.g.,
OpenSSL servers, enable logging session keys to support
analysis of network captures, and so we rely on such fa-
cilities to provide the session key to the verifier. Given
this, it is theoretically straightforward to reverse the en-
cryption on a client-to-server message mid-session—just
as the server can—but that capability does surprisingly
little to itself aid the verification of the client’s behav-
ior, as higher-level protocol logic often composes cryp-
tographic primitives in complex ways. Indeed, state-
of-the-art servers routinely fail to detect problems with
the message sequence received from a client, as demon-
strated by numerous such CVEs [24].

We thus continue with our strategy of incrementally
building an execution prefix Π in the client software as
each message is received by the verifier to validate the
client’s behavior. The verifier injects the logged ses-
sion key into the execution prefix at the point where
the key would first be generated by the client. Still,
however, the number of execution fragments that need
to be explored in cryptographic client implementations
is far too large to be overcome by concurrent explo-
ration alone, when other inputs to cryptographic algo-
rithms can be symbolic. Some of these (e.g., a mes-
sage plaintext, once decrypted) could be injected by
the verifier like the session key is, but in our experi-
ence, configuring where to inject what values would re-
quire much more client-implementation-specific knowl-
edge and bookkeeping than injecting just the session key
does. This is in part due to the many layers in which
cryptography is applied in modern protocols; e.g., in
the TLS handshake, multiple messages are hashed to
form the plaintext of another message, which is then
encrypted and authenticated. Even worse, other values,
e.g., a client’s ephemeral Diffie-Hellman key, will never
be available to a verifier (or server) and so cannot be in-
jected into an execution prefix.

These observations motivate a design whereby the ver-
ifier skips specified functions that would simply be too
expensive to execute with symbolic inputs. Specifying
such prohibitive functions need not require substantial
client-implementation-specific or even protocol-specific
knowledge; in our experience with TLS, for example, it
suffices to specify basic cryptographic primitives such as
modular exponentiation, block ciphers, and hash func-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 181

tions as prohibitive. Once specified as prohibitive, the
function is skipped by the verifier if any of its inputs are
symbolic, producing a symbolic result instead. Once rec-
onciled with the message sequence msg0, . . ., msgn under
consideration, however, the verifier can solve for some
values that it was previously forced to keep symbolic, af-
ter which it can go back and verify function computations
(concretely) it had previously skipped. Once additional
passes yield no new information, the verifier outputs any
unverified function computations (e.g., ones based on the
client’s ephemeral Diffie-Hellman key) as assumptions
on which the verification rests. Only if one of these as-
sumptions is not true will our verifier erroneously accept
this message trace. As we will see, these remaining as-
sumptions for a protocol like TLS are minimal.

5.1 User configuration

To be designated prohibitive, a function must meet cer-
tain requirements: it must have no side effects other
than altering its own parameters (or parameter buffers if
passed by reference) and producing a return value; given
the same inputs, it must produce the same results; and
it must be possible to compute the sizes of all output
buffers as a function of the sizes of the input buffers.
A function should be specified as prohibitive if it would
produce unmanageably complex formulas, such as when
the function has a large circuit representation. A func-
tion should also be specified as prohibitive if executing it
on symbolic inputs induces a large number of symbolic
states, due to branching that depends on input values. For
example, a physics engine might contain signal process-
ing functions that should be marked prohibitive.

In our case studies, the prohibitive functions are cryp-
tographic functions such as the AES block cipher or
SHA-256. We stress, however, that the user need not
know how these primitives are composed into a protocol.
We illustrate this in Appendix B, where we show the user
configuration needed for verifying the OpenSSL client,
including the specification of the prohibitive functions.
(The configuration for BoringSSL is similar.)

Specifying prohibitive functions generalizes the nor-
mal procedure used by symbolic execution to inject sym-
bolic inputs into the program. The user normally desig-
nates “user input” functions (such as getchar) as sym-
bolic, so that each one is essentially replaced with a func-
tion that always returns a symbolic, unconstrained value
of the appropriate size. The random number generators,
client-side inputs (i.e., stdin), and functions that return
the current time are also typically so designated. The
user configuration for prohibitive functions simply ex-
tends this mechanism so that some of these functions do
not always return symbolic outputs, but return concrete
outputs when their inputs are fully concrete.

5.2 Algorithm overview

The multipass verification algorithm works as follows,
when verifying a message msgn starting from Πn−1. The
algorithm expands the binary tree of nodes as described
in Sec. 4, with two main differences. First, if the next
instruction is a call to a prohibitive function, it is treated
as follows: If the prohibitive function is being called with
any symbolic input buffers, then its execution is skipped
and its outputs are instantiated with fully symbolic output
buffers of the appropriate size. If, on the other hand, the
prohibitive function is being called with only concrete
inputs, then the called function is executed concretely.

Second, upon hitting a network instruction that is con-
sistent with msgn, the accumulated constraints are saved
in a field nd.saved for the node nd that encountered the
network instruction. The execution fragment represented
by nd is then replayed (starting from Πn−1), again skip-
ping any prohibitive functions encountered with sym-
bolic inputs and concretely executing any encountered
with only concrete inputs. Upon hitting the network
instruction again, the algorithm compares the previ-
ous constraints (saved in nd.saved) with the constraints
σ .cons accumulated in the re-execution. If no new con-
straints have been gathered, then additional re-executions
of the execution fragment will similarly gather no new
constraints. As such, the execution fragment is appended
to Πn−1 to create Πn, since it is consistent with all of
msg0, . . . ,msgn, and the algorithm terminates. Any pro-
hibitive functions that were never concretely executed re-
sult in an assumption on which the verification rests—
specifically, that there is some input to each such pro-
hibitive function that is consistent with the constraints
implied by Πn and msg0, . . . ,msgn.

Note that the multipass algorithm for msgn does not re-
examine prohibitive functions that were skipped within
Πn−1. In cases where this is desired, lazy constraint gen-
eration provides a mechanism to do so, as described in
Appendix C.

5.3 Detailed walk-through

We now provide a walk-through of this algorithm on
a trivial C client shown in Fig. 3a. This client multiplies
two of its inputs x and y, encrypts it using a third input
iv as an initialization vector, and sends both iv and the
encrypted value to the server. Our tool begins with a node
initialized to the client entry point and attempts to verify
(by spawning worker threads) that there exist inputs x, y,
and iv that would produce the output message msg0 =
0x12349DAC that was observed over the network.

The worker thread that first reaches the SEND has, by
that time, accumulated constraints σ .cons as specified in
Fig. 3b. Note, however, that it has no constraints relat-

182 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

void Client(int x, int y, int iv) {

int p = x*y;

if (x % 9 == 0) {

if (y & 1 == 1) {

int s = AES(iv);

int c = p ^ s;

SEND(iv , c);

}

}

}

(a) Example client code

x % 9 == 0

FALSE TRUE

y & 1 == 1

AES(iv)

SEND(iv, c)

FALSE TRUE

Initial State:

x = ?, y = ?, iv = ?

Learned Constraints:

p = x * y

x % 9 = 0

y & 1 = 1

c = p ^ s

iv = 0x1234

c = 0x9DAC

Message to Verify:

𝑚𝑠𝑔0 = 0x12349DAC

𝜎. cons

nd.saved

(b) Pass one

x % 9 == 0

TRUE

y & 1 == 1

SEND(iv, c)

TRUE

AES(iv)

Initial State:

x = ?, y = ?

iv = 0x1234, c = 0x9DAC

Learned Constraints:

p = x * y

x % 9 = 0

y & 1 = 1

c = p ^ s

iv = 0x1234

c = 0x9DAC

s = 0x2343

p = 0xBEEF

Message to Verify:

𝑚𝑠𝑔0 = 0x12349DAC

𝜎. cons
≡

nd.saved

(c) Pass two

Figure 3: Example of multipass verification on a simple
client. σ .cons holds the constraints of the execution path
and accepted messages leading to the current state.

ing s (the output of AES(iv)) and iv, since AES was
designated as prohibitive and skipped (since iv is sym-
bolic). After reconciling these constraints with the mes-
sage msg0 = 0x12349DAC, the verifier records nd.saved.

The verifier then re-executes from the root (Fig. 3c).
Since it now knows iv = 0x1234, this time it does
not skip AES and so computes s = 0x2343 and
0x9DAC = p ^ 0x2343, i.e., p = 0xBEEF. After this
pass, the constraints in nd.saved are still satisfiable (e.g.,
x = 0x9, y = 0x1537). A third pass would add no new
information, and so the thread updates the corresponding
execution prefix (nd.path) and state (nd.state).

5.4 TLS example

We illustrate the behavior of the multipass algorithm on
TLS. Fig. 4 shows an abstracted subset of a TLS client
implementation of AES-GCM, running on a single block
of plaintext input. For clarity, the example omits details
such as the implicit nonce, the server ECDH parameters,
the generation of the four symmetric keys, and subsumes
the tag computation into the GHASH function. But in all
features shown, this walkthrough closely exemplifies the
multi-pass verification of a real-world TLS client.

In Fig. 4, the outputs observed by the verifier are the
client Diffie-Hellman parameter A, the initialization vec-
tor iv, the ciphertext c, and the AES-GCM tag t. The
unobserved inputs are the Diffie-Hellman private expo-
nent a, the initialization vector iv, and the plaintext p.
We do assume access to the AES symmetric key k. Since
client verification is being performed on the server end of
the connection, we can use server state, including k.

In the first pass of symbolic execution (Fig. 4a), even
with knowledge of the AES symmetric key k, all pro-
hibitive functions (ECDH, AES, GHASH) have at least
one symbolic input. So, the verifier skips them and pro-
duces unconstrained symbolic output for each. After the
first execution pass (Fig. 4b), the verifier encounters the
observed client outputs. Reconciling them with the ac-
cumulated constraints σ .cons yields concrete values for
A, t, c, and iv, but not the other variables.

The verifier then begins the second pass of symbolic
execution (Fig. 4c). Now, AES and GHASH both have
concrete inputs and so can be executed concretely. The
concrete execution of AES yields a concrete value for s,
which was not previously known. After the second exe-
cution pass (Fig. 4d), the verifier implicitly uses the new
knowledge of s to check that there is a p, the unobserved
plaintext value, that satisfies the constraints imposed by
observed output. Further passes yield no additional in-
formation, as no further symbolic inputs to prohibitive
functions can be concretized.

Note that the value of a, the client Diffie-Hellman
private exponent, is never computed. The verifier thus
outputs an assumption that there exists an a such that
ECDH(a) yields values A and k. As such, we do not detect
invalid curve attacks [19], for example; we discuss prac-
tical mitigations for this in Sec. 7.3. See Appendix B for
the whitelisting of this assumption for a real TLS client.

Note that no decryption mechanism is provided to the
verifier. The multipass mechanism automatically recov-
ers the plaintext for stream ciphers and counter-mode
block ciphers such as AES-GCM. For other, less pre-
ferred modes such as CBC, the user can provide inverse
functions via a feature described in Appendix C.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 183

RNG

RNG

STDIN

iv AES

ECDH A

GHASH

a

k
p

s c

t t

A

c

iv

Observed Outputs Unobserved Inputs

(symbolic) (concrete)

(a) First pass, execution

RNG

RNG

STDIN

iv AES

ECDH A

GHASH

a

k
p

s c

t t

A

c

iv

Observed Outputs Unobserved Inputs

(symbolic) (concrete)

(b) First pass, reconciliation

RNG

RNG

STDIN

iv AES

ECDH A

GHASH

a

k
p

s c

t t

A

c

iv

Observed Outputs Unobserved Inputs

(symbolic) (concrete)

(c) Second pass, execution

RNG

RNG

STDIN

iv AES

ECDH A

GHASH

a

k
p

s c

t t

A

c

iv

Observed Outputs Unobserved Inputs

(symbolic) (concrete)

(d) Second pass, reconciliation

Figure 4: Multipass algorithm on a TLS client implementing an abstracted subset of AES-GCM. Rectangular blocks
are prohibitive functions; circles are variables. Shaded nodes are concrete values or functions executed with concrete
inputs. Unshaded nodes are symbolic values or skipped functions. In Fig. 4b and Fig. 4d, some values become concrete
when σ .cons is reconciled with msgn.

6 Evaluation

In this section we evaluate our implementation of the al-
gorithms in Secs. 4–5. Our implementation is built on
a modified version of KLEE [9], a symbolic execution
engine for LLVM assembly instructions, and leverages
KLEE’s POSIX model, an expanded POSIX model used
by Cloud9 [8], and our own model of POSIX network
calls. We applied our implementation to verify OpenSSL
and BoringSSL clients. BoringSSL, a fork of OpenSSL
aiming to improve security and reduce complexity, incor-
porates changes to the API, thread safety, error handling,
and the protocol state machine—resulting in a code base
of 200,000 lines of code vs. OpenSSL’s 468,000. Bor-
ingSSL has been independently maintained since June
2014, and is now deployed throughout Google’s produc-
tion services, Android, and Chrome [23].

Our evaluation goals were as follows. First, we ran a
one-worker verifier against two attacks on OpenSSL that
represent different classes of client misbehavior, to illus-
trate detection speed. Second, we load tested a single-
worker verifier on a typical TLS 1.2 payload—the traf-
fic generated by a Gmail session—to illustrate the per-
formance of verifying legitimate client behavior. Third,
we increased the verification complexity to demonstrate
scalability to more complex protocols with larger client
state spaces, which we overcome using multiple workers.
We did this by verifying a TLS 1.3 draft [30] feature that
permits random padding in every packet. The OpenSSL
instrumentation (203 lines) and verifier configuration op-
tions (138 lines) we used are described in Appendix B;

the BoringSSL setup was similar.
The experiments were run on a system with 3.2GHz

Intel Xeon E5-2667v3 processors, with peak memory us-
age of 2.2GB. For the majority of the experiments, a sin-
gle core ran at 100% utilization. The only exception to
this was the third set of experiments (random padding),
where up to 16 cores were allocated, though actual uti-
lization varied significantly depending on workload.

Our main performance measure was verification lag.
To define lag, let the cost of msgn, denoted cost(n), be
the wall-clock time that the verifier spends to conclude if
msgn is valid, beginning from an execution prefix Πn−1
consistent with msg0, . . . ,msgn−1. That is, cost(n) is the
time it spends to produce Πn from Πn−1. The completion
time for msgn is then defined inductively as follows:

comp(0) = cost(0)
comp(n) = max{arr(n),comp(n−1)}+ cost(n)

where arr(n) is the wall-clock time when msgn arrived
at the verifier. Since the verification of msgn can-
not begin until after both (i) it is received at the ver-
ifier (at time arr(n)) and (ii) the previous messages
msg0, . . . ,msgn−1 have completed verification (at time
comp(n−1)), comp(n) is calculated as the cost cost(n)
incurred after both (i) and (ii) are met. Finally, the lag of
msgn is lag(n) = comp(n)−arr(n).

6.1 Misbehavior detection
We first evaluated our client verifier against two attacks
on OpenSSL that are illustrative of different classes of

184 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

vulnerabilities that we can detect: those related to tam-
pering with the client software to produce messages
that a client could not have produced (CVE-2014-0160
Heartbleed) and those with message sequences that,
while correctly formatted, would be impossible given a
valid client state machine (CVE-2015-0205). Note that
testing client misbehavior required proof-of-concept at-
tacks, usually prudently omitted from CVEs. We there-
fore constructed our own attack against each vulnerabil-
ity and confirmed that each attack successfully exploited
an appropriately configured server.

An OpenSSL 1.0.1f s server was instantiated with
standard settings, and an OpenSSL s client was mod-
ified to establish a TLS connection and send a single
Heartbleed exploit packet. This packet had a modi-
fied length field, and when received by an OpenSSL
1.0.1f s server, caused the server to disclose sensi-
tive information from memory. When the trace contain-
ing the Heartbleed packet was verified against the origi-
nal OpenSSL 1.0.1f s client, the verifier rejected the
packet after exhausting all search paths, with a lag for the
Heartbleed packet of 6.9s.

Unlike Heartbleed, CVE-2015-0205 involved only
correctly formatted messages. In the certificate ex-
change, a good client would send a DH certificate (used
to generate a pre-master secret), followed by an empty
ClientKeyExchange message. A malicious client might
send a certificate followed by a ClientKeyExchange mes-
sage containing a DH parameter. The server would then
authenticate the certificate but prefer the second mes-
sage’s DH parameter, allowing a malicious client to im-
personate anyone whose public certificate it obtained.

The verifier rejected an attempted attack after a lag of
2.4s, exhausting the search space. This exploit illustrates
the power of our technique: we not only verify whether
each message is possible in isolation, but also in the con-
text of all previous messages.

Since the tool verifies valid client behavior, no attack-
specific configuration was required. We do not require
any foreknowledge of the exploit and anticipate correct
detection of other exploits requiring client tampering.

6.2 Performance evaluation

Our Gmail performance tests measured the lag that re-
sulted from running single-worker verifiers against real-
world TLS traffic volumes. The data set was a tcpdump
capture of a three-minute Gmail session using Firefox,
and consisted of 21 concurrent, independent TLS ses-
sions, totaling 3.8MB of network data. This Gmail ses-
sion was performed in the context of one of the authors’
email accounts and included both receiving emails and
sending emails with attachments.

In this test we verified the TLS layer of a network

connection, but not the application layer above it, such
as the browser logic and Gmail web application. To
simulate the client-server configuration without access
to Gmail servers and private keys, we used the packet
sizes and timings from the Gmail tcpdump to generate
21 equivalent sessions using OpenSSL s client and
s server and the BoringSSL equivalents, such that the
amount of traffic sent in each direction at any point in
time matched identically with that of the original Gmail
capture.3 The plaintext payload (Gmail web application
data) of each session was also replayed exactly, though
the payload contents were unlikely to affect TLS perfor-
mance. One of the 21 TLS sessions was responsible for
the vast majority of the data transferred, and almost all
of the data it carried was from the server to the client;
presumably this was a bulk-transfer connection that was
involved in prefetching, attachment uploading, or other
latency-insensitive tasks. The other 20 TLS sessions
were utilized more lightly and presumably involved more
latency-sensitive activities. Since s client implements
a few diagnostic features in addition to TLS (but no ap-
plication layer), verifying s client against these 21 ses-
sions provided a conservative evaluation of the time re-
quired to verify the pure TLS layer.

lllllllll
l
llllllllllllllllllllllllllllllllll
l
lllllll

lll ll

lllllllllllll

ll

llllllllllllllllllll
lllllllll
l
lllllllllllllllll
lllllllllllllllllll
l
llllllll

lll ll

lllllllllllllllllllllllll

l

0

6

12

18

24

30

0 30 60 90 12
0

15
0

18
0

Arrival Time (s)

Ve
rif

ic
at

io
n

La
g

(s
)

Client
OpenSSL
BoringSSL

(a) All traffic

l
ll
lllllll
ll
lll
llll
ll
lll
l
l

ll
ll
lll
ll
l
ll
l

l

l
l

llllllll
lllllllllllllll

l
lll

lll
llll
l

l

lllllllll
lll
llll
ll
lll
l
l

ll
ll
lll
ll
l
ll
l

l

l
l
lllllllllllllllllll

l
lll

lll
llll
l

0

3

6

9

12

15

0 30 60 90 12
0

15
0

18
0

Arrival Time (s)

Ve
rif

ic
at

io
n

La
g

(s
)

Client
OpenSSL
BoringSSL

(b) No server-to-client app traffic

Figure 5: Verification lags for Gmail data set. Box plot
at arrival time t includes {lag(i) : t ≤ arr(i) < t + 30s}.
Fig. 5a shows lags for all messages in all 21 TLS ses-
sions. Fig. 5b shows lags if server-to-client application-
data messages are dropped.

Fig. 5 shows the distribution of verification lag of mes-
sages, grouped by the 30-second interval in which they
arrived at the verifier. In each box-and-whisker plot,
the three horizontal lines making up each box repre-
sent the first, second (median), and third quartiles, and
the whiskers extend to cover points within 1.5× the in-
terquartile range. Outliers are shown as single points. In
addition, the diamond shows the average value. Fig. 5a
show all of the messages’ verification lag. It is evident
from these figures that the majority of the verification lag

3To confirm the appropriateness of using the BoringSSL s client-
equivalent in these experiments, we also used it in verification of an
unmodified Chrome v50.0.2661.75 browser interacting with an Apache
HTTP server.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 185

happened early on, initially up to∼ 30s in the worst case.
This lag coincided with an initial burst of traffic related
to requests while loading the Gmail application. Another
burst occurred later, roughly 160s into the trace, when an
attachment was uploaded by the client. Still, the lag for
all sessions was near zero in the middle of the session and
by the end of the session, meaning that verification for all
sessions (in parallel) completed within approximately the
wall-clock interval for which the sessions were active.

l
l

l

l
l
ll ll

l

l ll ll

l
l
l llll
l
l l
l
l

l

l
l
ll ll

l

l

l

l ll ll ll ll

l

l ll ll ll

l

l ll ll

l

l ll ll

l

l ll ll

l

l ll ll

l

l ll

l

l ll lll ll ll lll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll lll ll ll lll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll ll

l

l lll lll ll ll ll ll ll
l
l lll lll lll ll
ll
l ll ll ll ll ll lll lll lll ll ll ll ll ll ll ll ll

l

l ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll ll
l

l

l ll ll ll ll ll ll ll

l

l

l

l

l

l

l ll lll ll ll ll lll ll lll lll ll
ll

l

l ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll ll ll ll ll ll ll ll ll ll ll lll ll ll

l

l

l

l

l

l

l ll ll lll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll

l

l ll ll ll

l

l lll ll ll ll ll ll ll ll ll lll lll ll ll ll ll ll ll ll ll ll ll
l

l

l

l

l

l ll ll ll

l

ll ll ll
l
l ll

l
l

l
l

l
l

l
l ll

l

l

l

l

l
l ll

l
ll ll

l
ll ll ll

l

l

l

l

l ll

l

l

l

l lll ll

l

l

l

ll

l

l ll

l

ll

l

l ll

l

l ll

l

l
l

l
ll
l ll ll ll lll ll

l
l

l
l

l
l

l

l ll

l

l
l

l

l ll

l

l

l

l ll

l

l ll

l

ll

l

l ll

l

l ll

l

l ll

l

ll

l

l

l

l

l

l ll

l

l

l

l ll

l

l

l

l ll

l

l
l

l

l

l ll lll ll ll

l

l

l

l ll lll ll ll

l

l
l ll ll

l

l ll ll ll

l

l
l ll ll

l

l
l ll ll

l

l ll ll ll ll ll

l

l

l ll ll

l

l ll
l

l

l

l

l

l ll lll ll lll ll lll ll ll

l

l
l ll ll

l

l
l ll ll

l

l

l

l

l ll lll ll lll ll ll

l

l
l ll ll

l

l
l ll ll

l

l
l ll ll

l

l ll ll

l

l
l ll ll ll

l

l
l ll llll ll ll

l

l
l ll ll

l

l

l

l ll ll
l
l ll ll

l

l
l ll ll

l

l
l ll ll

l

l ll ll

l

l
l ll lll
l
l ll ll

l

l ll ll

l

l
l ll ll

l

l
l ll lll
l

l

l ll lll ll ll

l

l
l ll ll ll

l

l
l ll ll ll ll lll
l

l

l ll lll ll ll

l

l

l ll ll

l

l

l

l ll lll ll ll

l

l
l ll ll

llllll
l

l

l
l ll ll ll ll ll lll ll
l
l ll lll ll lll ll ll

l

l ll lll ll ll

l

l
l ll lll ll lll

l

l ll ll

l

l ll ll ll ll ll ll ll ll

l

l

l ll ll ll lll
l
l ll ll ll

l

l
l ll ll

l

l ll ll

l

l
l ll ll

l

l
l ll ll
l

l

ll l
l

l

l
l
ll ll

l

l ll ll
l

l

l

l

l

l ll ll ll ll ll ll
l

l ll ll ll ll l
l
l

l

l
l
ll ll

l

l ll ll ll ll ll

llllll

l

l l

l

l

l l

ll

l ll

lllll

ll
l

l
l
l ll ll ll ll

lllllllllllllllllllllll

l

lll

l

lllllllllll

l

l l
l

l l ll l

l

l

l
l ll ll ll ll ll ll ll ll ll ll
ll
l

ll

l
l

l

l l

l

l
l ll
ll
l
ll
l
ll
l ll

l

l
l ll
ll
l ll

l

l

l
l ll

l
l
l ll

l
l
l ll

ll

l

l
l ll

l
l
l ll ll
ll
l

llllllll

l

l
l ll ll ll

l
l
l

l
l
l ll
l
l
l ll
l
l
l lll
l
l
l ll

l

l
l lll ll ll
l
l
l

l

l

l
l

l

l
l ll

l
l
l ll

l

l
l
l ll l
l
l

l

l
l
ll ll

l

l ll ll

l

l
l ll

l

l
l llll
l
l l
l
l

l

l
l
ll ll

l

l
l
l ll ll

l
llllllllllllll

ll
l

llllllllllllll

l

l
l llll
l
l l
l
l

l

l
l
ll ll

l

l ll ll

l
l
l ll

l
l
l ll

l
l
l ll
l l
l ll

l

l

l
l ll ll

l
l
l

llll

l

l
l ll

llllll

l

l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll

l
l
l ll l
l
l

l

l
l
ll ll

l

l ll ll ll
ll
l

l

l

l
l ll

llllllllllllllll

l

l
l ll

lll llll
lll lll lll lllll lll

l

ll l

l

l
l llll ll ll ll ll ll

l

l
l

l

l
l

l

l

l
l

l

l
l

ll

l

l
l

l

l
l ll l
l
l

l

l
l
ll ll

l

l

l

l ll
l
lll ll
l
l

l

l
l
ll ll

l

l ll ll

l

l
l ll l
l
l

l

l
l
ll ll

l

l

l

l ll ll ll ll
l
lll ll
l
l

l

l
l
ll ll

l

l ll ll
l
l llll
l
l l
l
l

l

l
l
ll ll

l

l

l

l ll

l
l

l ll
ll

l

l ll

l

l

l ll ll ll ll ll lll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll ll ll ll ll ll ll

l

l ll ll ll ll ll ll ll ll ll ll ll ll
l
ll ll ll ll ll ll ll ll ll ll

ll l

l ll ll ll ll ll lll ll
l

l ll
l
l ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll ll lll ll
l
l
l
l

l

l
l
ll ll

l

l

l

l

l

l ll ll ll ll ll ll ll ll ll lll ll ll ll

ll

l ll ll ll ll lll lll ll

l

l ll ll ll

l

l ll ll ll

l

l ll ll ll ll ll ll ll ll ll ll ll

l

l ll ll ll ll ll ll ll
l

l

l ll ll ll

l

l
l

l l

l ll ll lll ll ll lll ll ll ll

l

l
l

l ll ll ll

l

l
l
l ll ll ll

l

l
l

l

l
l

l ll ll lll ll ll ll

l

l
l
l ll ll ll

l

l
l
l ll ll ll

l

l
l
l ll ll ll

lll ll

l ll lll lll ll ll lll ll ll ll ll lll ll

l

l

l

l ll ll ll
l l
l

l

l
l
ll ll

l

l ll ll l
l
l

l

l
l
ll ll

l

l

l

l ll ll ll ll ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l

l

l ll lll ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l ll ll

l

l

l

l

l ll ll

l

l

l ll lll ll ll

l

l

l ll ll
l l
l

l

l
l
ll ll

l

l

l

l ll ll ll ll
l
ll ll ll
l
l
l
l

l

l
l
ll ll

l

l ll ll l
l
l

l

l
l
ll ll

l

l

l

l ll ll ll ll ll ll ll ll ll
lllllll l l
l

l

l
l
ll ll

l

ll ll l
l
l

l

l
l
ll ll

l

llll l0.00

0.25

0.50

0.75

0 5 10 15
Message Size (KB)

Ve
rif

ic
at

io
n

C
os

t (
s)

Figure 6: Size versus cost
for client-to-server (•) and
server-to-client (•) messages.

Verification cost
averaged 49ms per
TLS record, with 85%
costing ≤36ms and
95% costing ≤362ms.
Fig. 6 details cost
per message size for
all 21 TLS sessions.
Despite being smaller,
client-to-server mes-
sages are costlier
to verify, since the
verifier’s execution
of the client software
when processing
server-to-client mes-
sages is almost entirely concrete. In contrast, the
execution of the client in preparation of sending a
client-to-server message tends to involve more symbolic
branching. Also, note the linearity of the relationship
between message size and verification cost, particularly
for client-to-server messages. This feature suggests a
simple, application-independent way to estimate the
verification costs for TLS sessions carrying payloads
other than Gmail. Assuming similar message sizes in
each direction, a deployment could set a sharp timeout
at which point the verifier declares the client “invalid.”
For example, if Fig. 6 were a representative sample of
the workloads in a deployment, it would indicate that
setting a timeout at a mere 2s (verification cost) could
allow the verifier to quickly detect misbehaving clients
at a vanishingly small false alarm rate.

TLS-Specific Optimizations. While our goal so far
had been to provide for client behavior verification with
a minimum of protocol-specific tuning, a practical de-
ployment should leverage properties of the protocol for
performance. One important property of TLS (and other
TCP-based protocols such as SSH) is that its client-to-
server and server-to-client message streams operate in-
dependently. That is, with the exception of the initial ses-
sion handshake and ending session teardown, the verifi-
ability of client-to-server messages should be unaffected
by which, if any, server-to-client messages the client has
received. This gives the verifier the freedom to simply
ignore server-to-client application data messages. By

doing so, the verification costs for server-to-client mes-
sages, now effectively reduced to zero, did not contribute
to a growing lag. The effect of this optimization on lag is
shown in Fig. 5b, in particular reducing the median lag to
0.85s and the worst-case lag to around 14s. In all subse-
quent results, we have ignored server-to-client messages
unless otherwise noted.

6.3 Stress testing: Added complexity
The Gmail performance evaluation showed that verifi-
cation of a typical TLS 1.2 session can be done effi-
ciently and reliably, an advance made possible by apply-
ing a multipass methodology to cryptographic functions.
In essence, once the state explosion from cryptographic
functions is mitigated, the client state space becomes
small enough that the verification time is primarily deter-
mined by the straight-line execution speed of the KLEE
symbolic interpreter. However, not all clients are guar-
anteed to be this simple. One good example is the draft
TLS 1.3 standard [30]. In order to hide the length of the
plaintext from an observer, implementations of TLS 1.3
are permitted (but not required) to pad an encrypted TLS
record by an arbitrary size, up to maximum TLS record
size. This random encrypted padding hides the size of
the plaintext from any observer, whether an attacker or
a verifier. In other words, given a TLS 1.3 record, the
length of the input (e.g., from stdin) that was used to
generate the TLS record could range anywhere from 0 to
the record length minus header. Other less extreme ex-
amples of padding include CBC mode ciphers, and the
SSH protocol, in which a small amount of padding pro-
tects the length of the password as well as channel traffic.

We extended our evaluation to stress test our veri-
fier beyond typical current practice. We simulated the
TLS 1.3 padding feature by modifying a TLS 1.2 client
(henceforth designated “TLS 1.2+”), so that each TLS
record includes a random amount of padding up to 128
bytes4, added before encryption. We then measured veri-
fication performance, ignoring server-to-client messages
(except during session setup and teardown) as before.

Fig. 7 shows the performance of our single- and 16-
worker verifiers on TLS 1.2+ with a random amount of
encrypted padding. The addition of random padding to
TLS 1.2+ significantly enlarges the client state space that
must be explored. With a single-worker verifier, the veri-
fication cost increases substantially compared to the TLS
1.2 baseline. The 16-worker verifier reduces the verifi-
cation cost nearly back to the TLS 1.2 baseline levels.
This demonstrates that the state space search is highly
amenable to parallelization.

4While 128 bytes of padding may seem extreme, previous work
showed that an attacker could sometimes infer the website visited by
encrypted HTTP connections even with substantial padding (e.g., [25]).

186 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

llllll
llllll
l

lll
lllllllll

lll
llllllll
llll

0

39

78

117

156

195

0 30 60 90 12
0

15
0

18
0

Arrival Time (s)

Ve
rif

ic
at

io
n

La
g

(s
)

(a) NumWorkers = 1

llll
l
lllllll
lll
l

ll
l

ll

llll
l

l

lll
lll
ll
l
l
l
l
l
lllll
lll
l

ll
l

l

llll
l

0

8

16

24

32

40

0 30 60 90 12
0

15
0

18
0

Arrival Time (s)

Ve
rif

ic
at

io
n

La
g

(s
)

Client
OpenSSL
BoringSSL

(b) NumWorkers = 16

Figure 7: Verification lags for Gmail data set when up to
128 bytes of padding are added to each application plain-
text, over all 21 TLS sessions. Box plot at arrival time t
includes {lag(i) : t ≤ arr(i)< t+30s}. Fig. 7a shows the
lag for a one-worker verifier, and Fig. 7b shows the lag
for a 16-worker verifier.

7 Discussion

Here we discuss an approach for dealing with multiple
client versions, the applications for which our design is
appropriate, and several limitations of our approach.

7.1 Multi-version verifiers
When the version of the client software used by the ver-
ifier differs from the version being run by a legitimate
client, it is possible for the verifier to falsely accuse the
client of being invalid. This poses a challenge for verifi-
cation when the client version is not immediately evident
to the verifier. For example, TLS does not communi-
cate the minor version number of its client code to the
server. The possibility for false accusations here is real:
we confirmed, e.g., that a verifier for OpenSSL client
1.0.1e can fail if used to verify traffic for OpenSSL
client 1.0.1f, and vice versa. This occurs because,
e.g., the changes from 1.0.1e to 1.0.1f included re-
moving MD5 from use and removing a timestamp from
a client nonce, among other changes and bug fixes. In
total, 1.0.1f involved changes to 102 files amounting
to 1564 insertions and 997 deletions (according to git),
implemented between Feb 11, 2013 and Jan 6, 2014.

One solution to this problem is to run a verifier for
any version that a legitimate client might be using. By
running these verifiers in parallel, a message trace can
be considered valid as long as one verifier remains ac-
cepting of it. Running many verifiers in parallel incurs
considerable expense, however.

Another approach is to create one verifier that verifies
traffic against several versions simultaneously—a multi-
version verifier—while amortizing verification costs for
their common code paths across all versions. To show
the potential savings, we built a multi-version verifier
for both 1.0.1e and 1.0.1f by manually assembling a
“unioned client” of these versions, say “1.0.1ef”. In

client 1.0.1ef, every difference in the code between
client 1.0.1e and client 1.0.1f is preceded by a branch
on version number, i.e.,

if (strcmp(version, "1.0.1e") == 0) {

/* 1.0.1e code here */

} else {

/* 1.0.1f code here */

}

We then provided this as the client code to the verifier,
marking version as symbolic. Note that once the client
messages reveal behavior that is consistent with only one
of 1.0.1e and 1.0.1f, then version will become con-
crete, causing the verifier to explore only the code paths
for that version; as such, the verifier still allows only
“pure 1.0.1e” or “pure 1.0.1f” behavior, not a com-
bination thereof.

The single-worker costs (specifically, ∑i cost(i)) of
verifying 1.0.1e traffic with a 1.0.1ef verifier and of
verifying 1.0.1f traffic with a 1.0.1ef verifier were
both within 4% of the costs for verifying with a 1.0.1e
and 1.0.1f verifier, respectively. (For these tests, we
used the same Gmail traces used in Sec. 6.) Despite a
32% increase in symbolic branches and a 7% increase in
SMT solver queries, the overall cost increases very lit-
tle. This implies that despite an increase in the number
of code path “options” comprising the union of two ver-
sions of client code, the incorrect paths die off quickly
and contribute relatively little to total verification cost,
which is dominated by straight-line symbolic execution
of paths common to both versions.

While a demonstration of a multi-version verifier for
only two versions of one codebase, we believe this re-
sult suggests a path forward for verifying clients of un-
known versions much more efficiently than simply run-
ning a separate verifier for each possibility. We also an-
ticipate that multi-version verifiers can be built automat-
ically from commit logs to repositories, a possibility that
we hope to explore in future work.

7.2 Applications

Suitable Application Layers. Consider a deployment
of behavioral verification as an intrusion detection sys-
tem (IDS). Verification lag determines the period that a
server does not know a message’s validity. The appli-
cation layer chosen for our TLS evaluation, Gmail, ex-
hibited relatively high lag due to its high-volume data
transfers. Other applications may be more optimal for
behavioral verification. For example, XMPP [31] gen-
erally sends small XML payloads for text-based In-
ternet messaging. Another setting is electronic mail
(SMTP) [21], which originally lacked security. Gradu-
ally [15], the internet community has deployed mecha-

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 187

nisms such STARTTLS [18], SPF [20], DKIM [12], and
DMARC [22], many with cryptographic guarantees of
authenticity. Behavioral verification can provide a strong
compliance check of these mechanisms. Although data
volumes can be large, the application is tolerant of delay,
making verification lag acceptable.

Other Cryptographic Protocols. Perhaps due to its use
in various applications, TLS is one of the more complex
security protocols. We believe that the client verifica-
tion technique should generalize to other, often simpler,
protocols. One example is Secure Shell (SSH) [37, 38].
When used as a remote shell, SSH requires low la-
tency but transfers a relatively small amount of data: key
presses and terminal updates. When used for file transfer
(SFTP), a large volume of data is sent, but in a mode that
is relatively latency-insensitive.

7.3 Limitations

Source Code and Configuration. Our verifier re-
quires the client source code to generate LLVM bitcode
and to designate prohibitive functions. We also require
knowledge of the client configuration, such as command
line parameters controlling the menu of possible cipher
suites. Again, our approach is most suitable for environ-
ments with a known client and configuration.

Environment Modeling. While OpenSSL s client

has relatively few interactions with the environment,
other clients may interact with the environment exten-
sively. For example, SSH reads /etc/passwd, the
.ssh/ directory, redirects standard file descriptors, etc.
The KLEE [9] and Cloud9 [8] POSIX runtimes serve as
good starting points, but some environment modeling is
likely to be necessary for each new type of client. This
one-time procedure per client is probably unavoidable.

Manual Choice of Prohibitive Functions. We cur-
rently choose prohibitive functions manually. The choice
of hash functions, public key algorithms, and symmetric
ciphers may be relatively obvious to security researchers,
but not necessarily to a typical software developer.

Prohibitive Function Assumptions. When prohibitive
functions are initially skipped but eventually executed
concretely, verification soundness is preserved. If a pro-
hibitive function is never executed concretely (e.g., due
to asymmetric cryptography), this introduces an assump-
tion; e.g., in the case of ECDH, a violation of this as-
sumption could yield an invalid curve attack [19]. In a
practical deployment, the user designating a prohibitive
function should also designate predicates on the func-
tion’s output (e.g., the public key is actually a group el-
ement) that are specified by the relevant NIST or IETF
standards as mandatory server-side checks [26] (which

would have prevented the Jager et al. attack [19]). In
our tool, these predicates could be implemented via
lazy constraint generation (see Appendix C), or as a
klee assume for simple predicates. We recommend
typical precautions [13] to avoid Bleichenbacher-type at-
tacks [6].

Denial of Service. We anticipate our verifier being de-
ployed as an IDS via a passive network tap. To mitigate a
potential denial of service (DoS) attack, one could lever-
age the linear relationship between verification cost and
message size: (1) Impose a hard upper bound on verifier
time per packet, and declare all packets that exceed the
time budget invalid. Since our results show legitimate
packets finish within a few seconds, the bound could
easily be set such that the false alarm rate is negligible.
(2) Given a fixed CPU time budget, precisely compute
the amount of traffic that can be verified. The operator
could then allocate verifiers according to the threat pro-
file, e.g., assigning verifiers to high-priority TLS sessions
or ones from networks with poor reputation (e.g., [11]).
This would degrade verification gracefully as total traffic
bandwidth grows beyond the verification budget.

8 Conclusion

We showed that it is possible to practically verify that the
messaging behavior of an untrusted cryptographic client
is consistent with its known implementation. Our tech-
nical contributions are twofold. First, we built a parallel
verification engine that supports concurrent exploration
of paths in the client software to explain a sequence
of observed messages. This innovation is both gener-
ally useful for client verification and specifically useful
for verifying cryptographic clients, e.g., due to ambigu-
ities arising from message padding hidden by encryp-
tion. Second, we developed a multipass verification strat-
egy that enables verification of clients whose code con-
tains cryptographic functions, which typically pose ma-
jor challenges to symbolic execution. We demonstrated
that our verifier detects two classes of client misbehav-
ior: those that produce malformed messages, and those
whose message sequence is impossible. In addition, we
showed that our verifier can coarsely keep pace with a
Gmail TLS workload, running over both OpenSSL and
BoringSSL TLS 1.2 and over a more complex simula-
tion of TLS 1.3. We believe our system could dramati-
cally reduce the detection time of protocol exploits, with
no prior knowledge of the vulnerabilities.

Acknowledgements. We thank our shepherd, Boon
Thau Loo, and the anonymous reviewers for their com-
ments. This work was supported in part by NSF grants
1115948 and 1330599, grant N00014-13-1-0048 from
the Office of Naval Research, and a gift from Cisco.

188 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] B. Anderson, S. Paul, and D. A. McGrew. De-
ciphering malware’s use of TLS (without decryp-
tion). arXiv preprint, abs/1607.01639, 2016.

[2] T. Bergan, D. Grossman, and L. Ceze. Symbolic
Execution of Multithreaded Programs from Arbi-
trary Program Contexts. In 2014 ACM Interna-
tional Conference on Object Oriented Program-
ming Systems Languages & Applications, pages
491–506, 2014.

[3] D. Bethea, R. A. Cochran, and M. K. Reiter. Server-
side verification of client behavior in online games.
ACM Transactions on Information and System Se-
curity, 14(4), Dec. 2011.

[4] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud,
C. Fournet, M. Kohlweiss, P.-Y. S. A. Pironti, and
J. K. Zinzindohoue. A messy state of the union:
Taming the composite state machines of TLS. In
36th IEEE Symposium on Security and Privacy,
pages 535–552, 2015.

[5] K. Bhargavan, C. Fournet, M. Kohlweiss,
A. Pironti, and P. Strub. Implementing TLS
with verified cryptographic security. In 34th
IEEE Symposium on Security and Privacy, pages
445–459, 2013.

[6] D. Bleichenbacher. Chosen ciphertext attacks
against protocols based on the RSA encryption
standard PKCS #1. In Advances in Cryptology
– CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science. 1998.

[7] R. S. Boyer, B. Elspas, and K. N. Levitt. SE-
LECT – a formal system for testing and debugging
programs by symbolic execution. In International
Conference on Reliable Software, pages 234–245,
1975.

[8] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Par-
allel symbolic execution for automated real-world
software testing. In 6th European Conference on
Computer Systems, 2011.

[9] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In 8th
USENIX Symposium on Operating Systems Design
and Implementation, Dec. 2008.

[10] R. A. Cochran and M. K. Reiter. Toward online
verification of client behavior in distributed appli-
cations. In 20th ISOC Network and Distributed Sys-
tem Security Symposium, 2013.

[11] M. P. Collins, T. J. Shimeall, S. Faber, J. Janies,
R. Weaver, M. De Shon, and J. Kadane. Using un-
cleanliness to predict future botnet addresses. In
7th Internet Measurement Conference, pages 93–
104, 2007.

[12] D. Crocker, T. Hansen, and M. Kucherawy. Do-
mainKeys Identified Mail (DKIM) Signatures.
RFC 6376 (Internet Standard), Sept. 2011.

[13] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) protocol version 1.2. RFC 5246
(Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176, 7465, 7507.

[14] K. Durumeric, J. Kasten, D. Adrian, A. J. Hal-
derman, M. Bailey, F. Li, N. Weaver, J. Amann,
J. Beekman, M. Payer, and V. Paxson. The matter of
Heartbleed. In Internet Measurement Conference,
2014.

[15] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten,
E. Bursztein, N. Lidzborski, K. Thomas, V. Eranti,
M. Bailey, and J. A. Halderman. Neither snow nor
rain nor MITM...: An empirical analysis of email
delivery security. In 2015 ACM Internet Measure-
ment Conference, pages 27–39, 2015.

[16] J. T. Giffin, S. Jha, and B. P. Miller. Detecting ma-
nipulated remote call streams. In 11th USENIX Se-
curity Symposium, Aug. 2002.

[17] A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for Ajax intrusion detection. In 18th Inter-
national World Wide Web Conference, pages 561–
570, Apr. 2009.

[18] P. Hoffman. SMTP Service Extension for Secure
SMTP over Transport Layer Security. RFC 3207
(Proposed Standard), Feb. 2002. Updated by RFC
7817.

[19] T. Jager, J. Schwenk, and J. Somorovsky. Practical
invalid curve attacks on TLS-ECDH. In Computer
Security – ESORICS 2015, volume 9326 of Lecture
Notes in Computer Science. 2015.

[20] S. Kitterman. Sender Policy Framework (SPF) for
authorizing use of domains in email, version 1.
RFC 7208 (Proposed Standard), Apr. 2014. Up-
dated by RFC 7372.

[21] J. Klensin. Simple Mail Transfer Protocol. RFC
5321 (Draft Standard), Oct. 2008. Updated by RFC
7504.

[22] M. Kucherawy and E. Zwicky. Domain-based Mes-
sage Authentication, Reporting, and Conformance
(DMARC). RFC 7489 (Informational), Mar. 2015.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 189

[23] A. Langley. BoringSSL. ImperialViolet, Oct.
2015. https://www.imperialviolet.org/

2015/10/17/boringssl.html.

[24] J. Leyden. Annus HORRIBILIS for TLS!
all the bigguns now officially pwned in
2014. The Register, Nov. 2014. http:

//www.theregister.co.uk/2014/11/12/

ms_crypto_library_megaflaw/.

[25] M. Liberatore and B. N. Levine. Inferring the
source of encrypted HTTP connections. In 13th
ACM Conference on Computer and Communica-
tions Security, pages 255–263, 2006.

[26] D. McGrew, K. Igoe, and M. Salter. Fundamental
elliptic curve cryptography algorithms. RFC 6090
(Proposed Standard), Feb. 2011.

[27] MITRE. Divide-and-conquer session key re-
covery in SSLv2 (OpenSSL). CVE-2016-
0703, Mar. 1 2016. https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2016-0703.

[28] MITRE. Memory corruption in the ASN.1 en-
coder (OpenSSL). CVE-2016-2108, May 3
2016. https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2016-2108.

[29] B. Parno, J. Howell, C. Gentry, and M. Raykova.
Pinocchio: Nearly practical verifiable computation.
In IEEE Symposium on Security and Privacy, May
2013.

[30] E. Rescorla. The Transport Layer Security (TLS)
protocol version 1.3. Internet-Draft draft-ietf-tls-
tls13-18 (work in progress), IETF Secretariat, Oc-
tober 2016.

[31] P. Saint-Andre. Extensible Messaging and Presence
Protocol (XMPP): core. RFC 6120 (Proposed Stan-
dard), Mar. 2011.

[32] N. Skrupsky, P. Bisht, T. Hinrichs, V. N. Venkatakr-
ishnan, and L. Zuck. TamperProof: A server-
agnostic defense for parameter-tampering attacks
on web applicatoins. In 3rd ACM Conference on
Data and Application Security and Privacy, Feb.
2013.

[33] S. Vaudenay. Security flaws induced by CBC
padding - Applications to SSL, IPSEC, WTLS...
In Advances in Cryptology - EUROCRYPT 2002,
pages 534–546, 2002.

[34] K. Vikram, A. Prateek, and B. Livshits. Ripley: Au-
tomatically securing Web 2.0 applications through
replicated execution. In 16th ACM Conference

on Computer and Communications Security, Nov.
2009.

[35] M. Walfish and A. J. Blumberg. Verifying compu-
tations without reexecuting them. Communications
of the ACM, 58(2), Feb. 2015.

[36] S. Webb and S. Soh. A survey on network game
cheats and P2P solutions. Australian Journal of In-
telligent Information Processing Systems, 9(4):34–
43, 2008.

[37] T. Ylonen and C. Lonvick. The Secure Shell (SSH)
authentication protocol. RFC 4252 (Proposed Stan-
dard), Jan. 2006.

[38] T. Ylonen and C. Lonvick. The Secure Shell (SSH)
transport layer protocol. RFC 4253 (Proposed Stan-
dard), Jan. 2006. Updated by RFC 6668.

A Algorithm Details

The algorithm for verifying a client-to-server message
works as follows. This algorithm, denoted ParallelVerify,
takes as input the execution prefix Πn−1 consistent with
msg0, . . . ,msgn−1; the symbolic state σn−1 resulting from
execution of Πn−1 from the client entry point on message
trace msg0, . . . ,msgn−1; and the next message msgn. Its
output is Rslt, which holds the prefix Πn and correspond-
ing state σn in Rslt.path and Rslt.state, respectively, if a
prefix consistent with msg0, . . . ,msgn is found. If the pro-
cedure returns with Rslt.path= Rslt.state=⊥, then this
indicates that there is no execution prefix that can extend
Πn−1 to make Πn that is consistent with msg0, . . ., msgn.
This will induce backtracking to search for another Π̂n−1
that is consistent with msg0, . . ., msgn−1, which the ver-
ifier will then try to extend to find a Π̂n consistent with
msg0, . . ., msgn.

A.1 Parallel verification

ParallelVerify runs in a thread that spawns
NumWorkers + 1 child threads: one thread to man-
age scheduling of nodes for execution via the procedure
NodeScheduler (not shown) and NumWorkers worker
threads to explore candidate execution fragments via the
procedure VfyMsg (Fig. 8).
NodeScheduler manages the selection of node states

to execute next and maintains the flow of nodes between
worker threads. It receives as input two queues of nodes,
a “ready” queue QR and an “added” queue QA. These
queues are shared between the worker threads and the
NodeScheduler thread. Worker threads pull nodes from
QR and push new nodes onto QA. As there is only one

190 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.imperialviolet.org/2015/10/17/boringssl.html
https://www.imperialviolet.org/2015/10/17/boringssl.html
http://www.theregister.co.uk/2014/11/12/ms_crypto_library_megaflaw/
http://www.theregister.co.uk/2014/11/12/ms_crypto_library_megaflaw/
http://www.theregister.co.uk/2014/11/12/ms_crypto_library_megaflaw/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0703
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0703
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2108
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2108

scheduler thread and one or more worker threads produc-
ing and consuming nodes from the queues QR and QA,
QR is a single-producer-multi-consumer priority queue
and QA is a multi-producer-single-consumer queue. The
goal of NodeScheduler is to keep QA empty and QR full.
Nodes are in one of four possible states, either actively
being explored inside VfyMsg, stored in QR, stored in
QA, or being prioritized by NodeScheduler. A node
at the front of QR is the highest priority node not cur-
rently being explored. The nodes in QA are child nodes
that have been created by VfyMsg threads that need to
be prioritized by NodeScheduler and inserted into QR.
NodeScheduler continues executing until the boolean
Done is set to true by some VfyMsg thread.

Shown in Fig. 8, the procedure VfyMsg does the main
work of client verification: stepping execution forward
in the state σ of each node. In this figure, lines shaded
gray will be explained in Sec. A.2 and can be ignored
for now (i.e., read Fig. 8 as if these lines simply do not
exist). VfyMsg runs inside of a while loop until the
value of Done is no longer equal to false (101). Re-
call that the parent procedure ParallelVerify spawns mul-
tiple instances of VfyMsg. Whenever there is a node
on the queue QR, the condition on line 102 will be true
and the procedure calls dequeue atomically. Note that
even if |QR|= 1, multiple instances of VfyMsg may call
dequeue in 103, but only one will return a node; the rest
will retrieve undefined (⊥) from dequeue.

If nd is not undefined (104), the algorithm executes the
state nd.state and extends the associated path nd.path up
to either the next network instruction (SEND or RECV)
or the next symbolic branch (a branch instruction that is
conditioned on a symbolic variable). The first case, step-
ping execution on a non-network / non-symbolic-branch
instruction σ .nxt (here denoted isNormal(σ .nxt)), exe-
cutes in a while loop on lines 106–108. The current
instruction is appended to the path and the procedure
execStep is called, which symbolically executes the next
instruction in state σ . These lines are where most of
the computation work is done by the verifier. Concur-
rently stepping execution on multiple states is where
the largest performance benefits of parallelization are
achieved. Note that calls to execStep may invoke branch
instructions, but these are non-symbolic branches.

In the second case, if the next instruction is SEND or
RECV and if the constraints σ .cons accumulated so far
with the symbolic state σ do not contradict the possibil-
ity that the network I/O message σ .nxt.msg in the next
instruction σ .nxt is msgn (i.e., (σ .cons∧ σ .nxt.msg =
msgn) 6⇒ false, line 110), then the algorithm has suc-
cessfully reached an execution prefix Πn consistent with
msg0, . . ., msgn. The algorithm sets the termination
value (Done = true) and sets the return values of the
parent function on lines 112–113: Rslt.path is set to

100 procedure VfyMsg(msgn, Root, QR, QA, Done, Rslt)
101 while ¬Done do
102 if |QR|> 0 then
103 nd← dequeue(QR)
104 if nd 6=⊥ then
105 π ← nd.path ; σ ← nd.state
106 while isNormal(σ .nxt) do
107 π ← π ‖ 〈σ .nxt〉
108 σ ← execStep(σ)

109 if isNetInstr(σ .nxt) then
110 if (σ .cons∧σ .nxt.msg = msgn) 6⇒ false then
111 if (σ .cons∧σ .nxt.msg=msgn)≡ nd.saved then
112 Rslt.path← π ‖ 〈σ .nxt〉
113 Rslt.state← [execStep(σ) | σ .nxt.msg 7→ msgn]
114 Done← true . Success!
115 else
116 nd← clone(Root)

117 nd.saved← σ .cons∧σ .nxt.msg = msgn

118 enqueue(QA,nd)

119 else if isProhibitive(σ .nxt) then
120 nd.path← π ‖ 〈σ .nxt〉
121 nd.state← execStepProhibitive(σ ,nd.saved)

122 enqueue(QA,nd)
123 else if isSymbolicBranch(σ .nxt) then
124 π ← π ‖ 〈σ .nxt〉
125 σ ′← clone(σ)
126 σ ′← [execStep(σ ′) | σ ′.nxt.cond 7→ false]
127 if σ ′.cons 6⇒ false then
128 nd.child0←makeNode(π,σ ′,nd.saved)
129 enqueue(QA,nd.child0)

130 σ ← [execStep(σ) | σ .nxt.cond 7→ true]
131 if σ .cons 6⇒ false then
132 nd.child1←makeNode(π,σ ,nd.saved)
133 enqueue(QA,nd.child1)

Figure 8: VfyMsg procedure, described in Appendix A.1.
Shaded lines implement the multipass algorithm and are
described in Appendix A.2.

the newly found execution prefix Πn; Rslt.state is set
to the state that results from executing it, conditioned
on the last message being msgn (denoted [execStep(σ) |
σ .nxt.msg 7→ msgn]); and any prohibitive functions that
were skipped are recorded for outputting assumptions
(not shown, for notational simplicity). All other threads
of execution now exit because Done= true and the par-
ent procedure ParallelVerify will return Rslt.

In the final case, (isSymbolicBranch(σ .nxt)), the al-
gorithm is at a symbolic branch. Thus, the branch con-
dition contains symbolic variables and cannot be evalu-
ated as true or false in isolation. Using symbolic exe-
cution, the algorithm evaluates both the true branch and
the false branch by executing σ .nxt conditioned on the
condition evaluating to false (denoted [execStep(σ ′) |
σ ′.nxt.cond 7→ false] in line 126) and conditioned on the
branch condition evaluating to true (130). In each case,
the constraints of the resulting state are checked for con-
sistency (127, 131), for example, using an SMT solver.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 191

If either state is consistent, it is atomically placed onto
QA (129, 133).

A.2 The multipass algorithm

The multipass verification algorithm involves changes to
the VfyMsg procedure in Fig. 8, specifically the inser-
tion of the shaded lines. Whenever σ .nxt is a call to a
prohibitive function, it is treated separately (lines 119–
122), using the execStepProhibitive function (121). (To
accomplish this, isNormal in line 106 now returns false
not only for any network instruction or symbolic branch,
but also for any call to a prohibitive function.) If
execStepProhibitive receives a call σ .nxt to a prohibitive
function with any symbolic input buffers, it replaces the
call with an operation producing fully symbolic out-
put buffers of the appropriate size. However, if the
constraints saved in nd.saved allow the concrete input
buffer values to be inferred, then execStepProhibitive in-
stead performs the call σ .nxt on the now-concrete input
buffers.

Prior to the execution path reaching a network in-
struction, when a call σ .nxt to a prohibitive function
is encountered, nd.saved is simply true as initialized
(not shown), permitting no additional inferences about
the values of input buffers to σ .nxt. After a network
instruction is reached and msgn is reconciled with the
constraints σ .cons accumulated along the path so far
(110), the path constraints σ .cons and the new constraint
σ .nxt.msg = msgn are saved in nd.saved (117). The ex-
ecution path is then replayed from the root of the binary
tree (i.e., beginning from Πn−1, see 116). This process
repeats until an execution occurs in which nothing new is
learned (i.e., (σ .cons∧σ .nxt.msg = msgn) ≡ nd.saved,
in 111), at which point VfyMsg returns as before.

B TLS Experimental Setup

In Sec. 6, we applied our client verification algorithm
to OpenSSL, a widely used implementation of Transport
Layer Security (TLS) with over 400,000 lines of code. In
order to run OpenSSL symbolically in KLEE, some initial
instrumentation (203 modified/added lines of code) was
required: compiling to LLVM without x86 assembly, in-
serting symbolics at random number generators, and pro-
viding convenient record/playback functionality for test-
ing the network SEND and RECV points. This manual
one-time cost is likely unavoidable for symbolic execu-
tion of any application, but should be relatively small
(0.05% of the OpenSSL codebase).

We then configured our OpenSSL client with
one of the currently preferred cipher suites, namely
TLS ECDHE ECDSA WITH AES 128 GCM SHA256.

• Key exchange: Ephemeral Elliptic Curve Diffie-
Hellman (ECDHE) signed using the Elliptic Curve
Digital Signature Algorithm (ECDSA)

• Symmetric Encryption: 128-bit Advanced Encryption
Standard (AES) in Galois/Counter Mode

• Pseudorandom function (PRF) built on SHA-256

Since our goal was to verify the TLS layer and not the
higher-layer application, in our experiment we took ad-
vantage of the OpenSSL s client test endpoint. This
client establishes a fully functional TLS session, but al-
lows arbitrary application-layer data to be sent and re-
ceived via stdin and stdout, similar to the netcat

tool. Verifying that network traffic is consistent with
s client is roughly equivalent to verifying the TLS
layer alone.

The OpenSSL-specific user configuration for verifica-
tion consisted of the following:

1. Configuring the following OpenSSL functions as pro-
hibitive: AES encrypt, ECDH compute key,

EC POINT point2oct, EC KEY generate key,

SHA1 Update, SHA1 Final, SHA256 Update,

SHA256 Final, gcm gmult 4bit, gcm ghash 4bit

2. Configuring tls1 generate master secret as the
function to be replaced by server-side computation of
the symmetric key.

3. (Optional) Declaring EVP PKEY verify to be a func-
tion that always returns success. This is a perfor-
mance optimization only.

4. Configuring the whitelist of assumptions, containing
one element to accept the client’s ephemeral Diffie-
Hellman public key.

The user configuration for OpenSSL, comprising decla-
rations of prohibitive functions and their respective in-
put/output annotations, consisted of 138 lines of C code
using our API, which is implemented using C preproces-
sor macros. Fig. 9 shows an example prohibitive func-
tion declaration for the AES block cipher. In this macro,
we declare the function signature, which comprises the
128-bit input buffer in, the 128-bit output buffer out,
and the symmetric key data structure, key, which con-
tains the expanded round keys. Both in and key are
checked for symbolic data. If either buffer contains sym-
bolic data, out is populated with unconstrained symbolic
data, and the macro returns without executing any subse-
quent lines. Otherwise, the underlying (concrete) AES
block cipher is called.

In a pure functional language or an ideal, strongly
typed language, the prohibitive function specifications
could in principle be generated automatically from the

192 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

DEFINE_MODEL(void , AES_encrypt ,

const unsigned char *in ,

unsigned char *out ,

const AES_KEY *key)

{

SYMBOLIC_CHECK_AND_RETURN(

in, 16,

out , 16, "AESBlock ");

SYMBOLIC_CHECK_AND_RETURN(

key , sizeof(AES_KEY),

out , 16, "AESBlock ");

CALL_UNDERLYING(AES_encrypt ,

in, out , key);

}

Figure 9: Example prohibitive function declaration.

function name alone. Unfortunately, in C, the memory
regions representing input and output may be accessible
only through pointer dereferences and type casts. This
is certainly true of OpenSSL (e.g., there is no guarantee
that the AES KEY struct does not contain pointers to aux-
iliary structs). Therefore, for each prohibitive function,
the user annotation must explicitly define the data layout
of the input and output.

The final configuration step involves specifying a
whitelist of permitted assumptions. In the case of
OpenSSL, only one is necessary, namely, that the Elliptic
Curve Diffie-Hellman (ECDH) public key received from
the client is indeed a member of the elliptic curve group
(which, incidentally, the server is required to check [26]).
In an actual verification run, the verifier produces an as-
sumption of the form:

ARRAY(65) ECpointX_0___ECpoint2oct_0 =

0x04001cfee250f62053f7ea555ce3d8...

This assumption can be interpreted as the following
statement: the verifier assumes it is possible for the
client to create a buffer of length 65 bytes with con-
tents 0x04001cf... by first making the zeroth call to an
ECpoint generation function, and then passing its output
through the zeroth call to an ECpoint2oct (serialization)
function. The single-element whitelist for OpenSSL is
therefore simply:

ARRAY(*) ECpointX_*___ECpoint2oct_*

The asterisks (*) are wildcard symbols; the ECDH pub-
lic key can be of variable size, and for all n,m, we per-
mit the nth call to ECpointX and the mth call to the
ECpoint2oct functions to be used as part of an entry
in the whitelist.

The domain knowledge required for the first two con-
figuration steps is minimal, namely that current TLS
configurations use the above cryptographic primitives in

some way, and that a symmetric key is generated in a
particular function. The domain knowledge necessary
for the third configuration step is that TLS typically uses
public key signatures only to authenticate the server to
the client, e.g., via the Web PKI. The server itself gener-
ates the signature that can be verified via PKI, and so the
verifier knows that the chain of signature verifications is
guaranteed to succeed. Moreover, this optimization gen-
eralizes to any protocol that uses a PKI to authenticate
the server to an untrusted client. The domain knowledge
necessary for the fourth configuration step is non-trivial;
whitelisting a cryptographic assumption can have subtle
but significant effects on the guarantees of the behavioral
verifier (e.g., off-curve attacks). However, the number
of assumptions is small: for OpenSSL, there is only the
single assumption above.

C Lazy Constraint Generators

There are a number of cases in which a behavioral ver-
ifier requires an extra feature, called a lazy constraint
generator, to accompany the designation of a prohibitive
function.

Since a function, once specified as prohibitive, will be
skipped by the verifier until its inputs are inferred con-
cretely, the verifier cannot gather constraints relating the
input and output buffers of that function until the inputs
can be inferred via other constraints. There are cases,
however, where introducing constraints relating the in-
put and output buffers once some other subset of them
(e.g., the output buffers) are inferred concretely would be
useful or, indeed, is central to eventually inferring other
prohibitive functions’ inputs concretely.

Perhaps the most straightforward example arises in
symmetric encryption modes that require the inversion
of a block cipher in order to decrypt a ciphertext (e.g.,
CBC mode). Upon reaching the client SEND instruction
for a message, the verifier reconciles the observed client-
to-server message msgn with the constraints σ .cons ac-
cumulated on the path to that SEND; for example, sup-
pose this makes concrete the buffers corresponding to
outputs of the encryption routine. However, because the
block cipher was prohibitive and so skipped, constraints
relating the input buffers to those output buffers were not
recorded, and so the input buffers remain unconstrained
by the (now concrete) output buffers. Moreover, a second
pass of the client execution will not add additional con-
straints on those input buffers, meaning they will remain
unconstrained after another pass.

We implemented a feature to address this situation by
permitting the user to specify a lazy constraint generator
along with designating the block cipher as prohibitive.
The lazy constraint generator takes as input some subset
of a prohibitive function’s input and output buffers, and

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 193

produces as output a list of constraints on the prohibitive
function’s other buffers. The generator is “lazy” in that
it will be invoked by the verifier only after its inputs are
inferred concretely by other means; once invoked, it pro-
duces new constraints as a function of those values. In
the case of the block cipher, the most natural constraint
generator is the inverse function, which takes in the key
and a ciphertext and produces the corresponding plain-
text to constrain the value of the input buffer.

More precisely, a lazy constraint generator can be de-
fined as a triple L = (inE,outE, f) as follows:

1. inE: A set of symbolic expressions corresponding to
the “input” of f .

2. outE: A set of symbolic expressions corresponding to
the “output” of f .

3. f : A pure function relating inE and outE such that if
f could be symbolically executed, then the constraint
f (inE) = outE would be generated.

The set of expressions outE corresponds to the output
of f , not to the output of the lazy constraint genera-
tor. The lazy constraint generator L is blocked until
the set of expressions inE can be inferred to uniquely
take on a set of concrete values (e.g., inE = 42). At
that point, L is “triggered”, generating the real constraint
outE = f (inE) that can be added to the path condition
(e.g., outE = f (42) = 2187). Note that f may corre-
spond to a prohibitive function p(x) or it may correspond
to its inverse p−1(x). In the latter case, the expressions
inE represent the “input” to f but represent the “output”
of a prohibitive function p(x).

In order to create a lazy constraint generator, a pro-
hibitive function definition (i.e., DEFINE MODEL. . .) in-
cludes an additional call to the special function:

DEF_LAZY(uint8 *inE , size_t inE_len ,

uint8 *outE , size_t outE_len ,

const char *f_name)

The f name parameter designates to the verifier which
function should be triggered if inE can be inferred con-
cretely. Note that since there is only one input buffer
and one output buffer, some serialization may be required
in order to use this interface, but it is straightforward to
wrap any trigger function appropriately.

We illustrate lazy constraint functionality using two
example clients. First, let p and p inv be the following
“prohibitive” function and its inverse.

unsigned int p(unsigned int x) {

return 641 * x;

}

unsigned int p_inv(unsigned int x) {

return 6700417 * x;

}

The correctness of the inversion for p(x) can be seen
from the fact that the fifth Fermat number, F5 = 232+1, is
composite with factorization 641 · 6700417. Since addi-
tion and multiplication of 32-bit unsigned integer values
is equivalent to arithmetic modulo 232, we have:

p−1(p(x)) = 6700417 ·641 · x
=
(
232 +1

)
· x

≡ (1) · x (mod 232).

In place of p(x), one could use any function with a well-
defined inverse, such as a CBC-mode block cipher.

Fig. 10 shows an example program where p is a pro-
hibitive function. Assume that the lazy constraint gen-
erator represents p−1, the inverse function. Suppose
that when execution reaches SEND(y), the correspond-
ing data observed over the network is 6410. This im-
plies a unique, concrete value for y, so the lazy constraint
generator is triggered, generating a new constraint, x =
p−1(6410) = 10. Any observed value for SEND(x) other
than 10 causes a contradiction.

Fig. 11 shows a slightly trickier test case. Here, as-
sume that the lazy constraint generator is defined to cor-
respond to the original function p(x), instead of the in-
verse. Along the particular branch containing SEND(y),
the concretization of variable x is implied by the path
condition (x == 10) rather than by reconciling sym-
bolic expressions at a network SEND point. The implied
value concretization (IVC) of x triggers the execution of
p(x) = p(10) = 6410 and results in the new constraint
y = 6410. This constraint will then be matched against
the network traffic corresponding to SEND(y). Note that
at the time of writing, KLEE did not provide full IVC.
As a workaround, we inserted extra solver invocations at
each SEND to determine whether the conjunction of the
path condition and network traffic yielded enough infor-
mation to trigger any lazy constraint generators that have
accumulated.

int main() {

unsigned int x, y;

MAKE_SYMBOLIC (&x);

y = p(x);

SEND(y);

SEND(x);

return 0;

}

// Positive test case: 6410, 10

// Negative test case: 6410, 11

Figure 10: Client for which a lazy constraint genera-
tor could be triggered due to reconciliation with network
traffic at a SEND point.

194 14th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

int main() {

unsigned int x, y;

MAKE_SYMBOLIC (&x);

y = p(x);

SEND (314);

if (x == 10) {

SEND(y);

} else {

SEND (159);

}

return 0;

}

// Positive test case: 314, 159

// Positive test case: 314, 6410

// Negative test case: 314, 6411

Figure 11: Client for which a lazy constraint generator
could be triggered due to the implied value at a symbolic
branch.

Note that our OpenSSL case study in Sec. 5.4 does
not require lazy constraint functionality since in the
AES-GCM encryption mode, the ciphertext and plaintext
buffers are related by simple exclusive-or against outputs
from the (still prohibitive) block cipher applied to values
that can be inferred concretely from the message. So,
once the inputs to the block cipher are inferred by the
verifier, the block cipher outputs can be produced con-
cretely, and the plaintext then inferred from the concrete
ciphertexts by exclusive-or.

Although the CBC-mode cipher suites in TLS are no
longer preferred due to padding-oracle attacks [33], a
number of legacy clients still run them, as they lack sup-
port for the newer Authenticated Encryption with Asso-
ciated Data (AEAD) modes such as AES-GCM. Lazy
constraint generation enables behavioral verification of
these legacy clients.

In the limit, lazy constraint generators could be con-
figured for every single prohibitive function, such that
triggering one could cascade into triggering others. This
would essentially mimic the functionality of the multi-
pass algorithm of Sec. 5. An advantage of this approach
would be that the “subsequent passes” (as emulated by
cascading lazy constraints) execute only the code that
was skipped via the prohibitive function mechanism—
other unrelated code does not require re-execution. The
tradeoff is an increase in the number of solver queries
used to (1) detect that lazy constraints can be triggered,
and to (2) stitch the new constraints into the path condi-
tion and check whether satisfiability is maintained. Fu-
ture work could compare the performance tradeoffs be-
tween these two mechanisms.

USENIX Association 14th USENIX Symposium on Networked Systems Design and Implementation 195

