
Toward Online Verification of Client Behavior in Distributed Applications

Robert A. Cochran

Department of Computer Science

University of North Carolina

Chapel Hill, NC, USA

rac@cs.unc.edu

Michael K. Reiter

Department of Computer Science

University of North Carolina

Chapel Hill, NC, USA

reiter@cs.unc.edu

Abstract

Existing techniques for a server to verify the correctness

of client behavior in a distributed application suffer from

imprecision, increased bandwidth consumption, or signifi-

cant computational expense. We present a novel method for

a server to efficiently search for a code path through the

client that “explains” each client message, even though the

server does not know local inputs to the client that might

have caused the message. This method gives rise to a pre-

cise client verification technique that consumes no addi-

tional bandwidth and that validates most legitimate client

messages much faster than previous such techniques. Our

technique can gain even further improvements with a min-

imal increase in bandwidth use. We detail this innova-

tion and use it to verify client behavior in two client-server

games, namely XPilot and TetriNET. In our best configura-

tion, verification often keeps pace with TetriNET gameplay.

1. Introduction

In client-server applications, client misbehavior can pose

dangers to the larger distributed application in a variety of

ways. A manipulated client may be able to compromise

the server directly if the server has an extant vulnerability.

Even if the server has no such vulnerabilities, any applica-

tion state for which the client is authoritative can be altered

by a misbehaving client and then propagated via the server

to the larger distributed application.

A common approach to defend against client misbehav-

ior is for the server to validate client messages using a

model of valid client behavior derived from the sanctioned

client software. For example, Giffin et al. [12] and Guha

et al. [14] developed methods to confirm that requests are

consistent with a control-flow model of the client. This

approach admits false negatives, however — compromised

clients that make calls consistent with their control-flow

models (but that may still manipulate application state) can

escape detection, in a manner analogous to mimicry attacks

on intrusion-detection systems [28, 22]. Greater precision

has been achieved, but with greater expense. For example,

the Ripley system [25] replays each client on the server in

order to validate the client’s requests, but this incurs the

bandwidth overhead of transmitting all client-side inputs

(user inputs, timer values, etc.) to the server to permit re-

play and the computational overhead of replaying the client

on the server side. An approach by Bethea et al. [2] omits

transmitting client-side inputs, thus not incurring bandwidth

overheads, but then must search for whether there exist in-

puts that could have produced the client messages observed

at the server. The resulting computational expense renders

this method of verification useful primarily in an offline

fashion and, even then, only after modifying test applica-

tions to constrain the search spaces they present.

In this paper we develop a client-checking algorithm that

retains precision while permitting better tradeoffs between

bandwidth costs and computational expense in the common

case of a legitimate client. Our algorithm builds from the

aforementioned approach of Bethea et al. [2] but exploits a

training phase to guide a search for a path through the client

program that could have produced a message observed at

the server. One configuration of our algorithm incurs no ad-

ditional bandwidth costs, like Bethea et al.’s, but completes

verification much more efficiently in the common case of

a legitimate client. Another configuration of our algorithm

consumes minimal additional bandwidth — in our tests, at

most two bytes per client-to-server message — and com-

pletes verification even faster in the common case of a le-

gitimate client. Moreover, we reiterate that our algorithm

is precise in the sense of having no false negatives and no

false positives. That is, any sequence of client messages that

our technique declares legitimate actually is, in the sense

that there exist inputs that would have driven the sanctioned

client software to send that sequence of messages,1 and any

1More precisely, the only source of false negatives is the fidelity of

modeling values returned by components with which the client software

sequence of client messages that our technique declares im-

possible is actually inconsistent with the client software.

To definitively conclude that a sequence of client mes-

sages is impossible (the uncommon case), our algorithm

incurs a cost similar to Bethea et al.’s [2], however. As

such, we expect our algorithm to be useful primarily as an

online data reduction technique that prunes the client mes-

sages that must be logged for offline analysis by that (or

another) technique. In addition, clients whose messages are

not verified quickly by our technique can be serviced only

provisionally (e.g., with fewer privileges and/or logging to

enable undoing their effects) while their verification is com-

pleted offline.

We evaluate our algorithm in the context of online

games. Online games provide a useful proving ground for

our techniques due to the frequent manipulation of game

clients for the purposes of cheating [31, 17, 30] and due

to the pressure that game developers face to minimize the

bandwidth consumed by their games [19]. As such, our

techniques are directly useful for cheat detection in this

domain. Moreover, Hoglund and McGraw [15] argue that

“games are a harbinger of software security issues to come,”

suggesting that defenses against game cheats and game-

related security problems will be important techniques for

securing future massive distributed systems of other types.

Our evaluations show, for example, that verifying the be-

havior of a valid client in the TetriNET game can often keep

up with the pace of gameplay. Moreover, our algorithm suc-

ceeds in verifying messages traces of the highly interactive

XPilot game without game restrictions required by previous

techniques [2].

The technique that we develop here is an application

of symbolic execution [3], which has been widely studied

and applied for various purposes (see Section 2). Dynamic

analysis techniques like symbolic execution typically face

scaling challenges as code complexity and execution length

grow, and our case is no exception. We believe that the

technique we develop here to prioritize path analysis on the

basis of historical usage may be more broadly useful, i.e.,

outside of behavior verification in distributed systems, to

contain the expense of dynamic analysis.

The rest of this paper is structured as follows. We dis-

cuss related work in Section 2 and necessary background in

Section 3. We present our algorithm in Section 4 and Sec-

tion 5. Evaluation results for this algorithm are presented in

Section 6, and we conclude in Section 7.

2. Related Work

As we will see, the approach that we take to the behavior

verification problem that we study is an application of sym-

interacts (e.g., the client OS). This will be discussed further in Section 6.

bolic execution [3], a dynamic analysis technique that “ex-

ecutes” a program with some values unspecified or “sym-

bolic”, in order to derive the postconditions of the software

on the symbolic state. In our case, we symbolically exe-

cute the client software with client-side inputs unknown to

the server marked symbolic and then determine whether the

messages received from the client violate the postconditions

derived from the software. Symbolic execution has a long

history of study in the security and verification communi-

ties, but we believe the optimization problem we study here

to be distinct from prior work, as discussed below.

The applications of symbolic execution that are most re-

lated to our own are in debugging and diagnostics. Zamfir et

al. [34] developed a debugging tool that uses symbolic exe-

cution to reconstruct the likely path a program took before

it crashed, from the core dump file recorded by the operat-

ing system when the crash occurred. Their technique finds

a feasible path or set of paths through a program that allow

the program to reach the memory and process state that the

core dump file indicates. SherLog [33] is another error di-

agnosis tool that uses a log file instead of a core dump file

to indicate how a program executed. SherLog performs path

analysis (not symbolic execution per se, but a similar tech-

nique) to determine the likely execution paths and variable

values implied by a given set of log files. Similarly, sym-

bolic execution has been used to discover the constraints for

the paths through a program that reaches a vulnerability or

error condition [4, 5, 7, 32]. Viewed through the lens of

this paper, the core dump file, log file, or error condition

in these previous works is analogous to a “client message”,

and these tools similarly seek to find an execution that could

explain it. However, the structure of our verification task —

namely successively building an execution path to explain

an entire sequence of messages — and the performance de-

mands that we seek to meet in this work give rise to the

technique we propose, which we believe to be novel.

Among applications of symbolic execution, software

testing has received the most research attention. Symbolic

execution can be an effective method of increasing the de-

gree of code coverage in a testing tool by generating test

cases that cover a high percentage of paths in a program.

For example,DART [13] first concretely executes a program

with an arbitrary input, recording the path constraint im-

plied by its choice at each branch point. The path constraint

is then modified by negating a clause and a satisfying as-

signment to the constraint is found to derive a new input

that will cover a different path in the program. More recent

examples of this approach, which is also called concolic

testing or dynamic symbolic execution, include CUTE [21],

JPF [27] and Pex [23, 1]. Our approach expands the veri-

fier’s search for paths to explain client messages as needed,

starting from an initial collection of paths, but it does so

without solving for inputs to exercise a path concretely and

without the goal of achieving high path coverage, per se.

Aside from the behavior verification that we study here,

an orthogonal defense against client compromise is to strip

clients of authoritative state. In this approach, any state that

could affect the integrity of the larger distributed applica-

tion is instead managed at the server, outside the reach of

direct manipulation by the client. Tools such as Swift [9]

automatically identify such important state for placement at

the server. This approach, however, is known to increase

the bandwidth consumed by interactive applications such

as distributed games, owing to the need for every access to

authoritative state to reach the server (e.g., [19, p. 112]).

Another defense is to augment the client with monitoring

software (e.g., [10, 18, 20, 11, 16]), but this approach begs

the question of how to defend the monitoring software from

compromise and, in some domains, has suffered resistance

from the user community (e.g., [29]).

3. Background and Goals

As discussed in Section 1, our goal is to build a verifier

to detect a client in a distributed application that exhibits

behavior, as seen by the server, that is inconsistent with the

sanctioned client software and the application state known

at the server. That is, the verifier discerns whether there was

any possible sequence of inputs to the sanctioned client soft-

ware that could have given rise to each message received at

the server, givenwhat the server knew about the client based

on previous messages from the client and the messages the

server sent to the client. In doing so, our approach should

enable an automated, server-side validation procedure for

client messages.

More specifically, consider a sequence of messages

msg0,msg1, . . . that were sent or received by the client,

listed in the order in which the client sent or received them;

we call such a sequence amessage trace. Because the server

received or sent, respectively, each of these messages, the

server knows their contents,2 and previous work described

an efficient method for the client to inform the server of

the order in which the client processed these messages [2].

As such, the message tracemsg0,msg1, . . . is known to the

server and, so, the verifier.

The verifier’s goal is to find a sequence of client in-

structions, called an execution prefix and denoted Π, that

begins at the client entry point and is consistent with the

message trace msg0,msg1, In this paper we con-

sider only single-threaded clients, and so Π must represent

single-threaded execution. More specifically, Πn is consis-

tentwithmsg0,msg1, . . . ,msgn if the network I/O instruc-

2We do not consider the loss of client-to-server messages here, though

previous work [2] provided an efficient method to recover from such losses

that we can employ equally well.

tions (SEND and RECV3) in Πn number n + 1 and match

msg0,msg1, . . . ,msgn by type — i.e., if msgi is a client-

to-server message (respectively, server-to-client message),

then the i-th network I/O instruction is a SEND (respec-

tively, RECV) — and if the branches taken in Πn were pos-

sible given the contents of msg0,msg1, . . . ,msgn. There

may be many prefixes Π consistent with msg0,msg1, . . .

(e.g., depending on inputs to the client, such as user in-

puts or system-call return values), but if there are none, then

the tracemsg0,msg1, . . . is impossible given the sanctioned

client software.

The goal of the verifier is simply to determine if

there exists an execution prefix that is consistent with

msg0,msg1, . . .; if not, then the verifier detects the client

as compromised. Assuming that client compromise is rare,

our goal is to optimize locating such a prefix so that legiti-

mate clients (the common case) can be verified as quickly as

possible. While ideally both validation of legitimate clients

and detection of compromised clients would be achieved

online (i.e., at the pace of message receipt), the number of

execution prefixes to explore through the client will gen-

erally make it infeasible to definitively detect a compro-

mised client, since doing so requires checking that there

is no prefix Π that is consistent with the message trace

msg0,msg1, However, we seek to show that through

judicious design of the verifier, it can validate most legiti-

mate clients quickly. Requests from clients that the server

cannot validate quickly can then be subjected to stricter

(though presumably more expensive) sandboxing and/or

logging for further analysis offline.

4. Training

The algorithm we present in this paper to meet the goals

described in Section 3 incorporates a training phase that is

used to configure the verifier.

4.1. Requirements

The training phase uses message traces of client behavior

that should reflect to the greatest degree possible the actual

client behavior that will be subjected to verification. For ex-

ample, in the case of a client-server game, the training phase

should make use of message traces of valid gameplay. We

stress that the training phase requires only valid message

traces (i.e., for which there exists an execution prefix con-

sistent with each), and any invalid message traces will be

3In this paper, we abbreviate call instructions to POSIX select(),

send() and recv() system calls (or their functional equivalents) with

the labels SELECT, SEND and RECV. Our techniques apply to software

written to other interfaces, of course, but would require some of our defi-

nitions to be adapted accordingly.

detected as such during the training process (albeit at sub-

stantial computational expense). As such, there is no risk

of “poisoning” the training process with invalid message

traces, and gathering valid message traces for training pur-

poses can be done by executing the sanctioned client soft-

ware artificially or by recording message traces from actual

client-server sessions.

4.2. Algorithm

As we will discuss in Section 5, during verification the

verifier will attempt to find an execution prefix Πn that is

consistent with the message trace msg0, . . . ,msgn incre-

mentally, i.e., by appending to an execution prefix Πn−1

that is consistent with msg0, . . . ,msgn−1. To do so, it

searches through execution fragments in an effort to find

one that it can append to create Πn. The goal of the train-

ing phase, then, is to determine the order in which to search

possible execution fragments.

More specifically, let an execution fragment be any

nonempty path (i) beginning at the client entry point, a SE-

LECT, or a SEND in the client software, (ii) ending at a

SEND or RECV, and (iii) having no intervening SEND or

RECV instructions. Training produces a set Φ of execu-

tion fragments. As we will discuss in Section 5, the ver-

ifier will examine execution fragments in an order guided

by Φ to extend an execution prefix Πn−1 to reach an ex-

ecution prefix Πn that is consistent with a message trace

msg0, . . . ,msgn. Ideally, Φ would include the execution

fragments that are commonly exercised during execution or

reasonable approximations thereof.

The algorithm for constructingΦ starts from at least one

message trace msg0,msg1, . . . and execution prefix Π that

is consistent with it. We do not necessarily require that Π
is the actual execution prefix that was executed to produce

the trace, though if that execution prefix could be recorded

for the purposes of training, then it will certainly suffice.

Alternatively, Π could be produced from the trace (in an

offline fashion) using existing techniques [2].

Given the execution prefixΠ, the algorithm symbolically

executes the sanctioned client software on the pathΠ, main-

taining the resulting symbolic state throughout this execu-

tion. This symbolic state consists of memory regions pop-

ulated by symbolic values with constraints. The constraints

on symbolic values are those implied by execution of the

path Π; e.g., every branch condition involving a symbolic

value will generally add another constraint on that value,

perhaps in relation to other symbolic values. A memory

region is concrete if it is constrained to be a single value.

From this symbolic execution, the training algorithm

generates a “postcondition” for each distinct execution frag-

ment contained in Π. Specifically, after each execution of

a fragment in Π, the constraints on the symbolic state form

a “postcondition term” for that fragment. The disjunction

of all postcondition terms collected after execution of the

same fragment then forms the postcondition for that frag-

ment. Moreover, since the same fragment may appear in

other execution prefixes Π̂, the postcondition terms from all

such executions can contribute to the postcondition of the

fragment.

We use this postcondition to then determine the mes-

sages in each trace with which the fragment is consistent,

where “consistent” has a meaning analogous to, but some-

what more generous than, that for execution prefixes with

respect to message traces. Specifically, an execution frag-

ment is consistent with a messagemsg if the fragment ends

at an appropriate network I/O instruction — SEND if msg

is a client-to-server message, RECV otherwise — and in the

case of a SEND, if the fragment postcondition does not con-

tradict the possibility that msg was sent in that SEND or, in

other words, if the postcondition and the asserted message

contents do not imply false.

Once the set of execution fragments consistent with each

message is found, the next step of the algorithm divisively

clusters the execution fragments. The fragments are first

clustered by the type of their last instructions (SEND or

RECV) and then by their starting instructions; i.e., at the sec-

ond level, all fragments in the same cluster start at the same

instruction and end at the same type of network I/O instruc-

tion. Finally, each of these level-two clusters is clustered

so that fragments that are only small deviations from each

other (in terms of the instructions executed) are in the same

cluster. Specifically, each level-two cluster is clustered by

(Levenshtein) edit distance using k-medoid clustering to a

fixed number of clusters k (or fewer if there are fewer than k

fragments in a level-two cluster). Once the execution frag-

ments are clustered by edit distance, the medoid of each

cluster is added to Φ. In addition, all training messages

consistent with any fragment are retained as indicators for

the fragment’s cluster (and the cluster’s medoid).

5. Verification

In this section, we discuss how the verifier, for the next

message msgn in a message trace, utilizes the clustering

described in Section 4 to guide its search for an execu-

tion fragment of the client to “explain” the client’s progress

through it sending or receiving msgn. More specifically,

the verifier does so by finding an execution fragment to ap-

pend to an execution prefix Πn−1 that is consistent with

msg0, . . . ,msgn−1, in order to produce an execution prefix

Πn that is consistent with msg0, . . . ,msgn.

Before describing the verifier algorithm, there are two

important caveats to note. First, even if there is an execution

fragment that, appended to Πn−1, yields a Πn that is con-

sistent withmsg0, . . . ,msgn, it may be that this fragment is

not contained in Φ. Recall that Φ is only a partial list of all

execution fragments; it includes only the medoid fragments

after clustering the execution fragments from training. As

such, it will not suffice for us to limit our attention only to

the execution fragments in Φ, and indeed a central innova-

tion in our work is how we use Φ to guide the search for

execution fragments without being limited to it.

Second, even if the client is behaving legitimately, there

may be no execution fragment that can be appended to

Πn−1 to produce an execution prefix Πn that is consis-

tent with msg0, . . . ,msgn. In this case, Πn−1 could

not have been the path executed by the client through

msg0, . . . ,msgn−1. So, the verifier will need to back-

track to search for another Π̂n−1 that is consistent with

msg0, . . . ,msgn−1, which the verifier will then try to ex-

tend to find a Πn consistent with msg0, . . . ,msgn. Of

course, backtracking can re-enter previous message verifi-

cations, as well, and in the limit, can devolve into an ex-

haustive search for a path from the client entry point that

is consistent with msg0, . . . ,msgn. If and only if this ex-

haustive search concludes with no consistent path, the client

is detected as behaving inconsistently with the sanctioned

client software [2], and this exhaustive search will gener-

ally be costly. However, for the applications we consider

in Section 6, legitimate clients rarely require backtracking.

Combined with optimizations to backtracking that we de-

scribe in Section 5.3, our algorithm is a step toward making

it possible to quickly verify legitimate clients for such appli-

cations and triage those it cannot for further checking later

(and sandboxing in the interim).

5.1. Basic Verification Algorithm

The verification algorithm takes as input an execution

prefix Πn−1 consistent with msg0, . . ., msgn−1 and that

ends with the SEND or RECV at which msgn−1 was sent or

received. The verifier can symbolically execute the sanc-

tioned client software on the path Πn−1, using the concrete

messagesmsg0, . . .,msgn−1 as those sent or received at the

corresponding network I/O instructions in Πn−1, to yield

the symbolic state σn−1 of the client.

Preprocessing for a server-to-client message Ifmsgn−1

is a server-to-client message, then presumably msgn−1

most directly influenced client execution immediately after

it was received. So, our algorithm to produce a Πn con-

sistent with msg0, . . . ,msgn first performs a preprocess-

ing step by symbolically executing σn−1 forward using the

server-to-client message msgn−1 as the message received

in its last instruction (which is a RECV). σn−1 is a sym-

bolic state and so may branch on symbolic variables as it is

executed forward (even though msgn−1 is concrete); pre-

processing explores paths in increasing order of the number

of symbolic variables they include so far. This search con-

tinues until a path encounters an instruction that suggests

that the processing of msgn−1 by the client is complete —

specifically, upon encountering a SELECT or a SEND. The

path starting from σn−1 until this instruction are used to ex-

tend Πn−1 (and σn−1) to produce Π
+
n−1 (and σ

+
n−1).

If msgn−1 is a client-to-server message, then no such

preprocessing step is necessary. In this case, let Π+
n−1 and

σ+
n−1 be Πn−1 and σn−1, respectively.

Overview of basic verification algorithm The core of

the verification algorithm starts from the symbolic state

σ+
n−1 and uses a subset Φn ⊆ Φ to guide a search for an

execution fragment that can be appended to Π+
n−1 to yield

Πn that is consistent with msg0, . . . ,msgn. Intuitively, Φn

includes the execution fragments from Φ that are deemed

likely to be similar to the fragment executed by the client

leading up to it sending or receiving msgn. We defer dis-

cussing the selection of Φn to Section 5.4; here we simply

stipulate that each fragment in Φn begins at the instruction

pointed to by the program counter of σ+
n−1 and ends at a

SEND or RECV if msgn is a client-to-server message or a

server-to-client message, respectively. We stress that de-

spite these constraints, appending a φ ∈ Φn to Π+
n−1 will

not necessarily yield aΠn consistent withmsg0, . . . ,msgn.

Our verification algorithm executes roughly as follows.

The algorithm builds a strictly binary tree of paths, each

starting from the next instruction to be executed in σ+
n−1.

(Here, by “strictly” we mean that every non-leaf node has

exactly two children, not one.) The root of the tree is the

empty path, and the two children of a node in the tree ex-

tend the path represented by that node through the next sym-

bolic branch (i.e., branch instruction involving a symbolic

variable). One child represents that branch evaluating to

false, and the other represents that branch evaluating to true.

The algorithm succeeds in finding a fragment with which to

extend Π+
n−1 to yield Πn if, upon extending a path, it en-

counters a network I/O instruction that can “explain”msgn,

i.e., that yields a state with constraints that do not contradict

msgn being the network I/O instruction’s message.

Perhaps the central idea in our algorithm, though, is the

manner in which it selects the next node of the tree to ex-

tend. For this purpose it uses the training fragments Φn.

There are any number of approaches, but the one we eval-

uate here selects the path to extend to be the one that mini-

mizes the edit distance to some prefix of a fragment in Φn

(and that has not already been extended or found to be in-

consistent). This strategy naturally leads to first examining

the fragments in Φn, then other fragments that are small

modifications to those in Φn, and finally other fragments

that are further from the fragments in Φn. This algorithm

will be detailed more specifically below.

Algorithm verify (σ+

n−1,msgn, Φn)

101. nd ← makeNode()
102. nd.path ← 〈〉; nd.state ← σ+

n−1

103. Live ← {nd}
104.while (|Live| > 0) {
105. nd ← arg min

nd′∈Live

min
φ∈Φn

min
φ′⊑φ

editDist(nd′.path, φ′)

106. Live ← Live \ {nd}
107. σ ← nd.state; π ← nd.path

108. while (σ.next 6= ⊥ and

isNetInstr(σ.next) = false and

isSymbolicBranch(σ.next) = false)

109. π ← π ‖ 〈σ.next〉; σ ← execStep(σ)
110. if (isNetInstr(σ.next) = true and

((σ.constraints ∧ σ.next.msg = msgn) 6⇒ false))
111. return π ‖ 〈σ.next〉 // success!

112. else if (isSymbolicBranch(σ.next) = true) {
113. nd.child0 ← makeNode()
114. nd.child0.path ← π ‖ 〈σ.next〉
115. nd.child0.state ← [execStep(σ) |

σ.next.cond 7→ false]
116. if (nd.child0.state.constraints 6⇒ false)

117. Live ← Live ∪ {nd.child0}
118. nd.child1 ← makeNode()
119. nd.child1.path ← π ‖ 〈σ.next〉
120. nd.child1.state ← [execStep(σ) |

σ.next.cond 7→ true]
121. if (nd.child1.state.constraints 6⇒ false)

122. Live ← Live ∪ {nd.child1}
123. }
124. }
125. return ⊥ // failure

Figure 1. Basic verification algorithm, de

scribed in Section 5.1

Details of basic verification algorithm The algorithm

for verifying a client-to-servermessage is summarizedmore

specifically in Figure 1. This algorithm, denoted verify,

takes as input the symbolic state σ+
n−1 resulting from ex-

ecution of Πn−1 from the client entry point on message

trace msg0, . . . ,msgn−1 and then the preprocessing step

described above if msgn−1 is a server-to-client message;

the next message msgn; and the execution fragments Φn

described above (and detailed in Section 5.4). Its output is

either an execution fragment that can be appended to Π+
n−1

to make Πn that is consistent with msg0, . . ., msgn, or

undefined (⊥). The latter case indicates failure and, more

specifically, that there is no execution prefix that can ex-

tend Π+
n−1 to make Πn that is consistent with msg0, . . .,

msgn−1. This will induce the backtracking described above

to search for another Π̂n−1 that is consistent withmsg0, . . .,

msgn−1, which the verifier will then try to extend to find a

Πn consistent with msg0, . . ., msgn.

The aforementioned binary tree is assembled as a collec-

tion of nodes created in lines 101, 113, and 118 in Figure 1.

Each node has fields path, state, and children child0 and

child1. The root node nd is initialized with nd.path = 〈〉
and nd.state = σ+

n−1 (102). Initially only the root is created

(101–102) and added to a set Live (103), which includes the

nodes that are candidates for extending. The algorithm ex-

ecutes a while loop (104–124) while Live includes nodes

(104) and the algorithm has not already returned (111). If

thewhile loop exits because Live becomes empty, then the

algorithm has failed to find a suitable execution fragment

and ⊥ is returned (125).

Thiswhile loop begins by selecting a node nd from Live

that minimizes the edit distance to some prefix of a frag-

ment in Φn; see line 105, where φ′ ⊑ φ denotes that φ′

is a prefix of φ. The selected node is then removed from

Live (106) since any node will be extended only once. The

state σ of this node (107) is then executed forward one

step at a time (σ ← execStep(σ), line 109) and the ex-

ecution path recorded (π ← π ‖ 〈σ.next〉, where ‖ de-

notes concatenation) until this stepwise execution encoun-

ters the client exit (σ.next = ⊥, line 108), a network

I/O instruction (isNetInstr(σ.next) = true), or a sym-

bolic branch (isSymbolicBranch(σ.next) = true). In the

first case (σ.next = ⊥), execution of the main while

loop (104) continues to the next iteration. In the second

case (isNetInstr(σ.next) = true) and if the constraints

σ.constraints accumulated so far with the symbolic state σ

do not contradict the possibility that the network I/O mes-

sage σ.next.msg in the next instruction σ.next ismsgn (i.e.,

(σ.constraints ∧ σ.next.msg = msgn) 6⇒ false, line 110),

then the algorithm returns successfully since π ‖ 〈σ.next〉 is
an execution fragment that meets the verifier’s goals (111).

Finally, in the third case (isSymbolicBranch(σ.next) =
true), the algorithm explores the two possible ways of

extending π, namely by executing σ.next conditioned

on the branch condition evaluating to false (denoted

[execStep(σ) | σ.next.cond 7→ false] in line 115) and

conditioned on the branch condition evaluating to true

(120). In each case, the constraints of the resulting state

are checked for consistency (116, 121) and the consistent

states are added to Live (117, 122).

5.2. Refinements

Edit-distance calculations As discussed previously, one

insight employed in our verify algorithm is to explore paths

close to the training fragmentsΦn first, in terms of edit dis-

tance (line 105). Edit distance between strings s1 and s2 can

be computed by textbook dynamic programming in time

O(|s1| · |s2|) and space O(min(|s1|, |s2|)) where |s1| de-
notes the character length of s1 and similarly for s2. While

reasonably efficient, this cost can become significant for

large s1 or s2.

For this reason, our implementation optimizes the edit

distance computations. To do so, we leverage an algorithm

due to Ukkonen [24] that tests whether editDist(s1, s2) ≤
t and, if so, computes editDist(s1, s2) in time O(t ·
min(|s1|, |s2|)) and spaceO(min(t, |s1|, |s2|)) for a param-

eter t. By starting with a small value for t, we can quickly

find nodes nd′ ∈ Live such that for some φ ∈ Φn and φ′ ⊑
φ, editDist(nd′.path, φ′) ≤ t. Only after such nodes are

exhausted, do we then increase t and re-evaluate the nodes

still in Live. By proceeding in this fashion, verify incurs

cost per edit-distance calculation of O(t · min(|s1|, |s2|))
for the distance threshold t when the algorithm returns, ver-

sus O(|s1| · |s2|).

Second, when calculating editDist(nd′.path, φ), it is

possible to reuse intermediate results from a previous calcu-

lation of editDist(nd′.path, φ′) in proportion to the length

of the longest common prefix of φ and φ′. (Since Φn con-

tains only fragments beginningwith the instruction to which

the program counter points in σn−1, their common prefix is

guaranteed to be of positive length.) To take maximum ad-

vantage of this opportunity to reuse previous calculations,

we organize the elements of Φn in a prefix tree (trie), in

which each internal node stores the intermediate results

that can be reused when calculating editDist(nd′.path, φ)
for the execution fragments Φn that share the prefix repre-

sented by the interior node. In a similar way, the calcula-

tion of editDist(nd′.path, φ) can reuse intermediate results

from the editDist(nd.path, φ) calculation, where nd′.path

extends nd.path. In this way, the vast majority of edit dis-

tance calculations are built by reusing intermediate results

from others.

Third, though the verification algorithm as presented in

Figure 1 assembles each path π instruction-by-instruction

(lines 108–109), the paths nd′.path and fragments Φn are

not represented as strings of instructions for the purposes

of the edit distance calculation in line 105. If they were, it

would not be atypical for these strings to be of lengths in the

tens of thousands for some of the applications we consider

in Section 6, yielding expensive edit-distance calculations.

Instead, nd′.path and Φn are represented as strings of basic

block identifiers for the purposes of computing their edit

distance. In our evaluation, this representation resulted in

strings that were roughly an order of magnitude shorter than

if they had been represented as strings of instructions.

Judicious use of edit distance Despite the optimizations

just described, calculating edit distances incurs a degree of

overhead. As such, we have found that for highly interactive

applications, it is important to employ edit distance only

when Φn is likely to provide a useful guide in finding a π

with which to extend Πn−1 to obtain Πn.

For the applications with which we have experimented,

the primary case where using edit distance is counterpro-

ductive is whenminφ∈Φn
minφ′⊑φ editDist(nd

′.path, φ′) is
large for every nd′ ∈ Live. Because nodes are explored in

increasing order of their edit distances from their nearest

prefixes of training fragments, this condition is an indica-

tion that the training fragmentsΦn are not a good predictor

of what happened in the client application leading up to the

send or receipt of msgn. This condition implies that verify

now has little useful information to guide its search and so

no search strategy is likely to be a clear winner, and thus

in this case we abandon the use of edit distance to avoid

calculating it. That is, we amend verify so that when

min
nd′∈Live

min
φ∈Φn

min
φ′⊑φ

editDist(nd′.path, φ′) > dmax

for a fixed parameter dmax (dmax = 64 in our experiments

in Section 6), verify transitions to selecting nodes nd′ ∈
Live in increasing order of the number of symbolic variables

introduced on nd′.path. The rationale for this choice is that

it tends to prioritize those states that reflect fewer user inputs

and is very inexpensive to track.

Selecting nd In each iteration of the main while loop

104–124 of verify, the next node nd to extend is selected

as that in Live with a minimum “weight,” where its weight

is defined by its edit distance to a prefix of an element of

Φn. Since the only operations on Live are inserting new

nodes into it (lines 117, 122) and extracting a node of min-

imum weight (line 105), Live is represented as a binary

min-heap. This enables both an insertion of a new element

and the removal of its min-weight element to complete in

O(log |Live|) time where |Live| denotes the number of el-

ements it contains when the operation is performed. This

(only) logarithmic cost is critical since Live can grow to be

quite large; e.g., in our tests described in Section 6, it was

not uncommon for Live to grow to tens of thousands of ele-

ments.

Memory management The verification algorithm, upon

traversing a symbolic branch, creates new symbolic states to

represent the two possible outcomes of the branch (lines 115

and 120). Each state representation includes the program

counter, stack and address space contents. While KLEE [6]

(on which we build) provides copy-on-write semantics

for the address-space component, it does not provide for

garbage collection of allocated memory or a method to com-

pactly represent these states in memory. To manage the

considerable growth in memory usage during a long run-

ning verification task, we utilize a caching system that se-

lectively frees in-memory representations of a state if neces-

sary. If at a later time a freed state representation is needed

(due to backtracking, for example), our system reconstructs

the state from a previously checkpointed state. This method

adds to the overall verification time but reduces the extent

to which memory is a limiting factor.

5.3. Backtracking and Equivalent State Detection

As discussed at the start of Section 5, if verify(σ+
n−1,

msgn, Φn) returns ⊥ (line 125), then it is not possi-

ble that the client legitimately executed Π+
n−1, producing

state σ+
n−1, and then sent/received msgn. If msgn−1 is a

client-to-server message (and so Π+
n−1 = Πn−1), verifica-

tion must then backtrack into the computation verify(σ+
n−2,

msgn−1, Φn−1) to find a different fragment to append to

Π+
n−2 to yield a new execution prefix Π̂n−1 consistent with

msg0, . . ., msgn−1 and resulting in state σ̂n−1. Once it

does so, it invokes verify(σ̂n−1,msgn, Φ̂n) to try again. To

support this backtracking, upon a successful return from

verify(σ+
n−2, msgn−1, Φn−1) in line 111, it is necessary

to save the existing algorithm state (i.e., its Live set and the

states of the nodes it contains) to enable it to be restarted

from where it left off. If msgn−1 is a server-to-client mes-

sage (and so Π+
n−1 6= Πn−1), then backtracking is per-

formed similarly, except the computation of verify(σ+
n−2,

msgn−1, Φn−1) is resumed only after all possible exten-

sions Π̂+
n−1 of Πn−1 have been exhausted, i.e., each corre-

sponding verify(σ̂+
n−1,msgn, Φ̂n) has failed.

The most significant performance optimization that we

have implemented for backtracking is a method to detect

the equivalence of some symbolic states, i.e., for which ex-

ecution from these states (on the same inputs) will behave

identically. If the states σn−1 and σ̂n−1 are equivalent and if

a valid client could not sendmsgn after reaching σn−1, then

equivalently it could not send msgn after reaching σ̂n−1.

So, for example, if σ̂n−1 was reached due to backtracking

after verify(σn−1, msgn, Φn) failed, then the new execu-

tion prefix Π̂n−1 that produces σ̂n−1 should be abandoned

immediately and backtracking should resume again.

The difficulty in establishing the equivalence of σn−1

and σ̂n−1, if they are in fact equivalent, is that they may

not be syntactically equal. This lack of equality arises from

at least two factors. The first is that in our present imple-

mentation, the address spaces of the states σn−1 and σ̂n−1

are not the same, but rather are disjoint ranges of the virtual

address space of the verifier. Maintaining disjoint address

spaces for symbolic states is useful to enable their addresses

to be passed to external calls (e.g., system calls) during sym-

bolic execution. It also requires us to assume that the client

program execution is invariant to the range from which its

addresses are drawn, but we believe this property is true

of the vast majority of well-behaved client applications (in-

cluding the ones we use in our evaluation).

A second factor that may cause σn−1 and σ̂n−1 to be

syntactically distinct while still being equivalent is that

the different execution prefixes Πn−1 and Π̂n−1 leading

to these states may induce differences in their pointer val-

ues. Consider, for example, the trivial C function in Fig-

ure 2, which reads an input character and then branches

based on its value; in one branch, it allocates *buf1 and

then *buf2, and in the other branch, it allocates *buf2

and then *buf1. Even if the address spaces of different

states occupied the same ranges, and even if the memory

allocator assigned memory deterministically (as a function

of the order and size of the allocations), the addresses of

buf1 and buf2would be different in states that differ only

because they explored different directions of the symbolic

branch if (c == ’x’). These states would neverthe-

less be equivalent, assuming that the client application be-

havior is invariant to its state’s pointer values (again, a rea-

sonable assumption for well-behaved applications).

void foo(char **buf1, char **buf2) {

char c;

c = getchar();

if (c == ’x’) {

*buf1 = (char *) malloc(10);

*buf2 = (char *) malloc(10);

} else {

*buf2 = (char *) malloc(10);

*buf1 = (char *) malloc(10);

}

}

Figure 2. Toy example that may induce differ

ent pointer values for variables in otherwise
equivalent states

To detect equivalent states σn−1 and σ̂n−1 that are syn-

tactically unequal due to the above causes, we built a proce-

dure to walk thememory of two states in tandem. The mem-

ory of each is traversed in lock-step and in a canonical order,

starting from each concrete pointer in its global variables

(including the stack pointer) and following each concrete

pointer to the memory to which it points. (Pointers are rec-

ognized by their usage.) Concrete, non-pointer values tra-

versed simultaneously are compared for equality; unequal

values cause the traversal to terminate with an indication

that the states are not equivalent.4 Similarly, structural dif-

ferences in simultaneously traversed memory regions (e.g.,

regions of different sizes, or a concrete value in one where a

symbolic value is in the other) terminate the traversal. Sym-

bolic memory locations encountered at the same point in the

traversal of each state are given a common name, and this

common name is propagated to any constraints that involve

that location. Finally, equivalence of these constraints is

determined by using a constraint solver to determine if each

implies the other. If so, the states are declared equivalent.

4The state could still be equivalent if the differing concrete values do

not influence execution, but our method does not detect the states as equiv-

alent in this case.

5.4. Configurations

Thus far, we have not specified how Φn is populated

from the setΦ of medoids resulting from clustering the exe-

cution fragments witnessed during training (Section 4). We

consider two possibilities for populating Φn in this paper.

Default configuration The default algorithm configura-

tion constructsΦn from the contents ofmsgn. If the closest

training message is at distance m from msgn, for a mea-

sure of distance described below, then the algorithm com-

putes the set Mα
n of training messages less than distance

αm frommsgn, for a fixed parameter α ≥ 1. (In Section 6,
we use α = 1.25.) An execution fragment φ is eligible to

be included in Φn if (i) φ is the medoid of some cluster for

which there is an indicator message msg ∈ Mα
n , and (ii)

φ begins at the instruction to which the program counter

in σ+
n−1 points, where σ+

n−1 is the symbolic state that will

be passed to verify along with msgn and Φn. Then, Φn is

set to include all eligible fragments up to a limit β; if there

are more than β eligible fragments, then Φn consists of an

arbitrary subset of size β. (In Section 6, we use β = 8.)
The distance measure between messages that we use in

our evaluation in Section 6 is simply byte edit distance be-

tween messages of the same directionality (i.e., between

server-to-client messages or between client-to-server mes-

sages). If msg and msgn do not have the same direction-

ality, then we define their distance to be ∞, so that only

training messages of the same directionality as msgn are

included in Mα
n .

Hint configuration The “hint” configuration requires that

the client software has been adapted to work with the ver-

ifier to facilitate its verification. In this configuration, the

client piggybacks a hint on msgn that is a direct indica-

tion of the execution fragment it executed prior to sending

msgn. This extra hint, however, increases the bandwidth

utilized by client-to-server messages, and so it is important

that we minimize this cost.

Specifically, in this configuration, the client software has

knowledge of the clustering used by the verifier, as de-

scribed in Section 4.2. (For example, the server sends it this

information when the client connects.) The client records

its own execution path and, when sending a client-to-server

message msgn, maps its immediately preceding execution

fragment to its closest cluster in the verifier’s clustering (us-

ing edit distance on execution fragments). The client then

includes the index of this cluster withinmsgn as a “hint” to

the verifier. The server extracts the cluster index frommsgn

and provides this to the verifier.

Intuitively, the medoid φ of the indicated cluster should

be used as the sole element of the set Φn, but only if φ be-

gins at the instruction pointed to by the program counter of

the symbolic state σ+
n−1 to be provided to verify as input.5

For the applications we evaluate in Section 6, however, we

adapt this idea slightly and interpret this cluster indexwithin

the set of all clusters whose fragments begin at that instruc-

tion and end at a SEND. Then, Φn is set to contain only

the medoid of this cluster. (If the cluster index exceeds the

number of clusters whose fragments begin at that instruc-

tion, or if msgn is a server-to-client message, then the de-

fault approach above is used to create Φn, instead.) In this

way, the cluster hint can be conveyed in exactly ⌈log2 k⌉
extra bits on each client-to-server message, where k is the

number of clusters allowed by the verifier in its third level

of clustering (see Section 4.2). While sending a hint does

increase bandwidth cost, it does so minimally; e.g., in Sec-

tion 6, we consider k = 256 (1 byte per client-to-server

message) and k ≤ 65536 (2 bytes per client-to-server mes-

sage).

Despite the fact that the client sends the hint to the server,

the client remains completely untrusted in this configura-

tion. The hint it provides is simply to accelerate verification

of a legitimate client, and providing an incorrect hint does

not substantially impact the verifier’s cost for declaring the

client compromised.

6. Evaluation

To evaluate our technique, we built a prototype that uses

the KLEE [6] symbolic execution engine as a foundation.

Our implementation includes approximately 1000 modified

source lines of code (SLOC) in KLEE and additional 10,000

SLOC in C++. That said, at present we have not com-

pleted the client-side implementation of the hint configu-

ration described in Section 5.4, and so we instead simulate

the client-side hint in our evaluation here. We stress, there-

fore, that while we accurately measure the verifier’s perfor-

mance in both the default and hint configurations, the addi-

tional client overheads implied by the hint configuration are

not reported here. The experiments described in this sec-

tion were performed on a system with 24GB of RAM and a

2.93GHz processor (Intel X5670).

We limit our evaluation to the verifier’s performance, for

two reasons. First, performance is the dimension on which

our algorithm offers a contribution over the most closely

related previous research [2]. Second, by design, our ver-

ification algorithm has no false positives — i.e., if a mes-

sage trace is declared to be inconsistent with the sanctioned

client software, then it really is (though this is subject to an

assumption discussed in Section 5.3). Similarly, the only

5An alternative is for the verifier to backtrack immediately if φ begins

at a different instruction, since in that case, σ+
n−1

is apparently not repre-

sentative of the client’s state when it executed the fragment leading up to

it sending msgn. For the applications we evaluate in Section 6, however,

backtracking usually incurred more verification cost even in this case.

source of false negatives arises from the limited fidelity of

the constraints used to model values returned by compo-

nents with which the client software interacts (e.g., the OS).

We could improve that fidelity by subjecting these compo-

nents to symbolic execution, as well, but here we limit sym-

bolic execution to the client software proper.

To evaluate performance, we apply our algorithm to ver-

ify behavior of legitimate clients of two open-source games,

namely XPilot and TetriNET (described in Section 6.1). We

limit our attention to legitimate clients since this is the case

in which we make a contribution; i.e., our approach is de-

signed to validate legal behavior more quickly than previ-

ous work, but confirms illegal behavior in time comparable

to what previous work [2] would achieve. We employ these

games for our evaluation for numerous reasons: they are

complex and so pose challenging test cases for our tech-

nique; they are open-source (and our tools require access to

source code); and games is a domain that warrants behav-

ior verification due to the invalid-command cheats to which

they are often subjected [30].

6.1. Applications

XPilot XPilot is an open-source, multi-player, client-

server game that has been developed in many revisions over

more than 15 years including, e.g., a version for the iPhone

that was released in July 2009. The version we used in our

evaluation is XPilot NG (XPilot Next Generation) version

4.7.2. Its client consists of roughly 100,000 SLOC. Beyond

this, the scope of symbolic execution included all needed

libraries except Xlib, whose functions were replaced with

minimal stubs, so that the game could be run without dis-

play output. Moreover, uClibc was used in lieu of the

GNU C library.

In the game, the user causes her spaceship to navigate a

two-dimensional world occupied by obstacles, objects such

as power-ups that the user can collect by navigating her

spaceship over them, and both fixed and mobile hostiles

that can fire on her ship (some of which are ships controlled

by other players). Each player’s goal is to earn the high-

est score. Despite its “2D” graphics, the game incorporates

sophisticated physics simulation; e.g., ships with more fuel

have greater mass and thus greater inertia.

Upon startup, the XPilot client reads local files that, e.g.,

define the world map. (Our evaluation assumes that these

initialization files are available to the verifier, as they must

be to the server, as well.) The XPilot client then enters an

event loop that receives user input and server messages, pro-

cesses them (including rendering suitable changes on the

client’s display), and sends an update to the server. These

updates can include information about the current status

of the user’s ship’s shields (whether they are up or down),

weapons (whether any are firing), position, orientation, ac-

celeration, etc. Various limitations imposed by the client,

such as that a client cannot both have its shields up and

be firing at the same time, are obvious targets for a user

to override by modifying the game client in order to cheat.

Our behavior verification technique will detect such game

cheats automatically.

The previous work by Bethea et al. that leveraged XPi-

lot to evaluate its techniques found it necessary to modify

the XPilot client in various small ways to make its analy-

sis tractable (see [2, Section 5.2]). We used this modified

version in our evaluations, as well, though to illustrate cer-

tain improvements enabled by our technique, we reverted

an important modification made there. Specifically, Bethea

et al. inserted bounds to limit the number of user inputs that

would be processed in any given event-loop round, since

otherwise the event loop could theoretically process an un-

bounded number of such inputs. This unboundedness, in

turn, caused symbolic execution to explore arbitrary num-

bers of corresponding input-processing loop iterations. By

inserting bounds, Bethea et al. rectified this problem but

introduced a potential source of false positives, if the de-

ployed client software is not modified in the same way. In

our evaluation, we removed these inserted limits so as to

eliminate this risk of false positives and also to highlight

the power of training our verifier on previous executions.

After removing these limits, these input-processing loops

could theoretically iterate an arbitrary number of times, but

nevertheless our verifier does not explore paths including

increasingly large numbers of such iterations until it is done

exploring paths with numbers of iterations similar to those

encountered in the training runs. Aside from highlighting

the strength of our technique, removing these bounds ren-

ders the Bethea et al. approach to verification intractable.

TetriNET TetriNET is a multi-player version of the popu-

lar single-player Tetris game. In the Tetris game, one player

controls a rectangular gameboard of squares, at the top of

which a tetromino appears and starts to “fall” toward the

bottom at a constant rate. Each tetromino is of a size to oc-

cupy four connected grid squares orthogonally and has one

of seven shapes. The tetromino retains its shape and size as

it falls, but the user can reorient the tetromino as it falls by

pressing keys to rotate it. The user can also move the tetro-

mino to the left or right by pressing other keys. Once the

tetromino lands on top of another tetromino or the bottom

of the grid, it can no longer be moved or rotated. At that

point, another tetromino appears at the top of the grid and

begins to fall. Whenever a full row of the gameboard is oc-

cupied by tetrominos, the row disappears (potentially frac-

turing any tetrominos occupying a portion of it) and all rows

above the removed row are shifted downward. TetriNET dif-

fers from Tetris by adding an empty row to all other players’

grids when this occurs. The goal of the game is for a player

to place as many tetrominos as possible before no more can

enter her gameboard, and a player wins the multiplayer ver-

sion by playing longer than other players.

The TetriNET client is structured as an event loop that

processes user inputs and advances each tetromino in its fall

down the gameboard. Only once a tetromino has landed

in its resting place does the game client inform the server

of the location of the tetromino and whether its placement

caused any rows to be deleted (and if so, which ones). The

server does not validate the client’s claim that the condition

for deleting the rowwas met (i.e., that the rowwas full), and

so the game is very vulnerable to invalid-command cheats.

Again, our technique will automatically detect such cheats.

The TetriNET client version (0.11) that we used in our

evaluation is 5000 SLOC. As in XPilot, the scope of sym-

bolic execution also included all needed libraries, though

again the display output library (ncurses) was disabled

using minimal stub functions and uClibc was used in

place of the GNU C library. Despite its small size, a sin-

gle event-loop iteration in the TetriNET client permits an

unbounded number of user inputs to rotate or horizontally

shift the tetromino, which presents problems for symbolic

execution analogous to those that led Bethea et al. to cap the

number of inputs in a single XPilot event-loop iteration. As

such, in their experimentation with TetriNET, Bethea et al.

limited gameplay so that a tetromino could be placed only

at a location for which only empty squares were above it,

so as to limit the number of user inputs needed for a tetro-

mino placement to half the width of the gameboard plus the

number of possible tetromino rotations — nine user inputs

in total [2]. We emphasize that none of these restrictions

are employed in our evaluation, and again the ability of our

algorithm to verify the behavior of a TetriNET client in its

unconstrained form illustrates its strengths.

6.2. Results

Evaluation of our verification algorithm requires traces

of gameplay for both training and testing. For TetriNET, we

generated 20 traces of manual gameplay, each of 240 mes-

sages in length (which corresponds to roughly 6.5 minutes

of gameplay). For XPilot, we generated 40 traces of man-

ual gameplay, each consisting of 2100 messages (roughly

70 seconds of gameplay).

TetriNET Figure 3 shows TetriNET verification costs.

Figure 3 includes plots for both the default and hint config-

urations, as well as for clustering parameter values k = 256
and k = 3790; the latter case ensured a single execution

fragment per cluster.

The numbers represented in Figure 3 were obtained by

a 20-fold cross validation of the TetriNET traces; i.e., in

each test, one of the traces was selected for testing, and

the remainder were used for training. Specifically, Fig-

ure 3 shows the distribution of verification time per mes-

sage, binned into ten-message bins, across all 20 traces. So,
for example, the boxplot labeled “0” shows the distribution

of verification times for messages msg0, . . . ,msg9 in the

20 traces. The data point for messagemsgn accounts for all

time spent in verify(σ+
n−1,msgn, Φn) and any immediately

preceding preprocessing step (see Section 5.1), including

any backtracking into those functions that occur. (That said,

backtracking in TetriNET is very rare.) In each boxplot,

the “box” shows the first, second (median) and third quar-

tiles, and its whiskers extend to ±1.5 times the interquar-

tile range. Additional outlier points are shown as bullets.

Overlaid on each boxplot is a diamond (✸) that shows the

average of the data points.

Several things are worth noting about Figure 3. In all

cases, the distribution of verification times is largely un-

affected by the message index, i.e., where in the trace the

message appears. This confirms that our implementation

is mostly free from sources of increasing verification ex-

pense as traces grow longer. This figure also confirms that

more fine-grained clustering (k = 3790) leads to faster ver-
ification times than coarse grained (k = 256). Fine-grain

clustering, however, results in greater bandwidth use in the

hint configuration; k = 3790 implies an overhead of 12 bits
or, if sent as two bytes, an average of 17% bandwidth in-

crease per client-to-server message, in contrast to only 9%
per client-to-server message for k = 256. Not surprisingly,
the hint configuration generally outperforms the default.

Figure 3 also suggests that our algorithm is, for the large

majority of messages, fast enough to verify valid TetriNET

gameplay at a pace faster than the game itself: the average

verification cost per message, regardless of configuration or

clustering granularity, is easily beneath the inter-message

delay of roughly 1.6s. That said, there are two issues that

require further exploration. First, there are messages that

induce verification times in excess of 10s or even 100s,
which unfortunately makes it impossible to reliably keep

pace with gameplay. Nevertheless, as an optimization over

previous work for verifying message traces, and as a data

reduction technique to eliminate some traces (or portions

thereof) from the need to log and analyze offline, our tech-

nique still holds considerable promise. Second, and work-

ing in favor of this promise, is the slack time between the

arrival of messages that gives verification the opportunity to

catch up to the pace of gameplay after a particularly difficult

message verification.

To shed light on these issues, Figure 4 instead plots the

distributions of per-message verification delay between the

arrival of message msgn at the server (where a server-to-

client message “arrives” when it is sent) and the discovery

of an execution prefix Πn that is consistent with msg0, . . .,

msgn. Delay (Figure 4) differs from verification time (Fig-

10
−3

10
−2

10
−1

10
0

10
1

10
2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

T
im

e
 (

s
)

(a) Default, k = 256

10
−3

10
−2

10
−1

10
0

10
1

10
2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

T
im

e
 (

s
)

(b) Hint, k = 256

10
−3

10
−2

10
−1

10
0

10
1

10
2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

T
im

e
 (

s
)

(c) Default, k = 3790

10
−3

10
−2

10
−1

10
0

10
1

10
2

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

T
im

e
 (

s
)

(d) Hint, k = 3790

Figure 3. TetriNET verification times. Cross
validation over 20 traces. Boxplot at x shows

verification times for messages msgx, . . .,

msgx+9 in each trace (after training on the
other traces). “✸” shows the average.

ure 3) by representing the fact that verification for msgn

cannot begin until after that for msgn−1 completes. So,

for example, the rightmost boxplot in each graph provides

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

D
e
la

y
 (

s
)

(a) Default, k = 256

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

D
e
la

y
 (

s
)

(b) Hint, k = 256

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

D
e
la

y
 (

s
)

(c) Default, k = 3790

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

Message Bin

D
e
la

y
 (

s
)

(d) Hint, k = 3790

Figure 4. TetriNET verification delays. Cross
validation over 20 traces. Boxplot at x shows

verification delays for messages msgx, . . .,

msgx+9 in each trace (after training on the
other traces). “✸” shows the average.

insight into how long after the completion of the message

trace (in real time) that it took for verification for the whole

trace to complete.

0%

50%

100%

Tetrinet
Default

Tetrinet
Hint

XPilot
Default

Xpilot
Hint

V
e
ri

fi
c
a
ti
o
n
 T

im
e

Constraint Solving

Equiv. State Detection

Computing Edit Distance

Operations on Live

Executing insts. in KLEE

Figure 5. Percentage of time spent in each
component of our algorithm.

One item to note about these graphs is that for the hint

configuration with k = 3790 (Figure 4(d)), the median of

the rightmost boxplot is virtually zero— i.e., the most com-

mon case is that verification kept pace with gameplay. This

can occur even if verification falls behind at some point in

the game, since verification commonly “catches up” after

falling behind. This is illustrated, for example, in the gen-

erally downward slope of consecutive outlier points in Fig-

ure 4(d). That said, the cumulative effect of verification de-

lays in the other configurations is more costly, e.g., causing

verification to lag behind gameplay by more than 100 sec-

onds by the end of a 240-message trace in the median case

in the default configuration (Figure 4(c)).

A breakdown of verification costs for TetriNET is shown

in Figure 5. In our TetriNET experiments, more than 50%

of the verification time is spent in KLEE, interpreting client

instructions. Therefore, optimizations that interpret instruc-

tions only selectively (e.g., [8]) may be a significant opti-

mization for our tool. The majority of the remaining time

is spent in insertions and deletions on Live and in comput-

ing edit distance, both to update the edit distance for each

path when a symbolic branch is reached and to compute dis-

tances between messages. A very small fraction of time in

our TetriNET experiments is devoted to equivalent state de-

tection (Section 5.3) or in constraint solving. In Figure 5,

constraint solving includes not only the time spent by STP

(the default solver used by KLEE), but also preprocessing

techniques to make queries to STP more efficient (borrowed

from Bethea et al. [2, Section 4.4]) and a canonicalization

step (borrowed from Visser et al. [26]) to improve the hit

rate on cached results for previous queries to STP. These op-

timizations significantly reduce the overall constraint solv-

ing time.

XPilot XPilot poses a significant challenge for verifica-

tion because its pace is so fast. The tests described here

use an XPilot configuration that resulted in an average of 32
messages per second. The verification times per message

vary somewhat less for XPilot than they did for TetriNET,

as shown in Figure 6. Recall that each boxplot in Figure 6

represents 100× 40 points, versus only 10× 20 in Figure 3.
As such, though there are larger numbers of outliers in Fig-

ure 6, they constitute a smaller fraction of the data points.

Themedian per-message verification cost of XPilotwhen

clustering is fine-grained (k = 475, which implied a sin-

gle execution fragment per cluster) is quite comparable to

that in TetriNET, as can be seen by comparing Figure 6(c)

and Figure 6(d) to Figure 3(c) and Figure 3(d), respectively.

However, XPilot verification is considerably faster with

coarse clustering, see Figure 6(a) versus Figure 3(a) and

Figure 6(b) versus Figure 3(b). Our definition of k = 256 as
“coarse” clustering was dictated by the goal of limiting the

bandwidth overhead to one byte per client-to-server mes-

sage in the hint configuration. The better performance of

XPilot verification for coarse clustering versus TetriNET is

at least partly because k = 256 is closer to fine cluster-

ing (k = 475) in the case of XPilot than it is for TetriNET

(k = 3790). In the hint configuration, k = 256 increases

bandwidth use by XPilot client-to-server messages by 2%,

and k = 475 (9 bits, sent in two bytes) increases it by 4%.

Though the median per-message verification cost of XPi-

lot is generally as good or better than that for TetriNET, the

faster pace of XPilot makes it much more difficult for veri-

fication to keep pace with the game. This effect is shown in

Figure 7. As shown in this figure, none of the configurations

or clustering granularities permitted verification to keep up

with gameplay, and the best default configuration (k = 475)
included one run that required 8 minutes past the end of the

trace to complete its verification (see Figure 7(c)). Conse-

quently, for an application as fast-paced and as complex as

XPilot, our algorithm does not eliminate the need to save

traces for post hoc analysis.

Nevertheless, we stress that our algorithm accomplishes

— even if with some delay — what is for the most closely

related previous work [2] completely intractable. That is,

recall that Bethea et al. utilized a restricted version of XPi-

lot in which the number of user inputs per event loop iter-

ation was artificially limited; we have removed that limita-

tion here (see Section 6.1). With these restrictions removed,

the Bethea et al. approach is inherently unbounded for veri-

fying some messages, since it seeks to eagerly find all paths

that could explain that message, of which there could be

infinitely many. Our approach, in contrast, succeeds in ver-

ifying all messages in these logs in bounded time and with

per-message cost averaging under 100ms in all configura-

tions (Figure 6).

A fractional breakdown of verification times for XPi-

lot are shown in Figure 5. While a majority of the cost

is still contributed by interpreting client instructions in

KLEE, the majority is smaller in the case of XPilot than

it was for TetriNET. For XPilot, equivalent state detection

10
−2

10
−1

10
0

10
1

10
2

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

T
im

e
 (

s
)

(a) Default, k = 256

10
−2

10
−1

10
0

10
1

10
2

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

T
im

e
 (

s
)

(b) Hint, k = 256

10
−2

10
−1

10
0

10
1

10
2

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

T
im

e
 (

s
)

(c) Default, k = 475

10
−2

10
−1

10
0

10
1

10
2

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

T
im

e
 (

s
)

(d) Hint, k = 475

Figure 6. XPilot verification times. Cross
validation over 40 traces. Boxplot at x shows

verification times for messages msgx, . . .,

msgx+99 in each trace (after training on the
other traces). “✸” shows the average.

(Section 5.3) plays a more prominent role than it did for

TetriNET, in part due to XPilot’s more complex memory

structure. Moreover, due to the substantially more complex

0

160

320

480

640

800

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

D
e
la

y
 (

s
)

(a) Default, k = 256

0

160

320

480

640

800

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

D
e
la

y
 (

s
)

(b) Hint, k = 256

0

160

320

480

640

800

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

D
e
la

y
 (

s
)

(c) Default, k = 475

0

160

320

480

640

800

0 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

Message Bin

D
e
la

y
 (

s
)

(d) Hint, k = 475

Figure 7. XPilot verification delays. Cross
validation over 40 traces. Boxplot at x shows

verification delays for messages msgx, . . .,

msgx+99 in each trace (after training on the
other traces). “✸” shows the average.

constraints generated by XPilot, constraint solving plays a

much more prominent role than it did for TetriNET.

7. Conclusion

In this paper we have presented a novel algorithm to en-

able a server to verify that the behavior of a client in a

client-server application is consistent with the sanctioned

client software. The central challenge that must be over-

come in achieving this goal is that the server does not know

all of the inputs to the client (e.g., user inputs) that induced

its behavior, and in some domains (see [19]) the additional

bandwidth utilized by sending those inputs to the server is

undesirable. We therefore developed a technique by which

the verifier “solves” for whether there exist user inputs that

could explain the client behavior. We overcome the scaling

challenges of this approach by leveraging execution history

to guide a search for paths through the client program that

could produce the messages received by the server. This

approach enables us to achieve dramatic cost savings in the

common case of a legitimate client, and by allowing mini-

mal additional bandwidth use, we can improve performance

even further. In the best configuration of our algorithm,

verification of legitimate TetriNET gameplay often keeps

pace with the game itself. In other cases, verification ef-

ficiency is adequate to practically handle client applications

that previous work was forced to restrict to make its analy-

sis tractable. We believe that the manner in which we lever-

age execution history can be useful in other applications of

symbolic execution, as well.

Acknowledgements This work was supported in part by

NSF grants 0910483 and 1115948 and by a gift from Intel.

We are grateful to Darrell Bethea for comments on a draft

of this paper.

References

[1] S. Anand, P. Godefroid, and N. Tillmann. Demand-driven

compositional symbolic execution. In Tools and Algorithms

for the Construction and Analysis of Systems, 14th Inter-

national Conference, TACAS 2008, volume 4963 of Lecture

Notes in Computer Science, pages 367–381. Mar. 2008.

[2] D. Bethea, R. A. Cochran, and M. K. Reiter. Server-side ver-

ification of client behavior in online games. ACM Transac-

tions on Information and System Security, 14(4), Dec. 2011.

[3] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT – a formal

system for testing and debugging programs by symbolic ex-

ecution. In International Conference on Reliable Software,

pages 234–245, 1975.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha.

Towards automatic generation of vulnerability-based signa-

tures. In IEEE Symposium on Security and Privacy, May

2006.

[5] J. Caballero, Z. Liang, P. Poosankam, and D. Song. To-

wards generating high coverage vulnerability-based signa-

tures with protocol-level constraint-guided exploration. In

Recent Advances in Intrusion Detection, 12th International

Symposium, RAID 2009, volume 5758 of Lecture Notes in

Computer Science, pages 161–181. 2009.
[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted

and automatic generation of high-coverage tests for complex

systems programs. In 8th USENIX Symposium on Operating

Systems Design and Implementation, Dec. 2008.
[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.

Engler. EXE: Automatically generating inputs of death. In

13th ACM Conference on Computer and Communications

Security, Nov. 2006.
[8] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a plat-

form for in-vivo multi-path analysis of software systems.

In 16th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages

265–278, 2011.
[9] S. Chong, J. Liu, A. C. Myers, X. Qi, N. Vikram, L. Zheng,

and X. Zheng. Secure web applications via automatic par-

titioning. In 21st ACM Symposium on Operating Systems

Principles, pages 31–44, Oct. 2007.
[10] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky, U. Sammapun,

I. Lee, and C. Tsarouchis. Is runtime verification applicable

to cheat detection? In 3rd ACM SIGCOMM Workshop on

Network and System Support for Games, Aug. 2004.
[11] W. Feng, E. Kaiser, and T. Schluessler. Stealth measure-

ments for cheat detection in on-line games. In 7th ACM

Workshop on Network and System Support for Games, pages

15–20, Oct. 2008.
[12] J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated

remote call streams. In 11th USENIX Security Symposium,

Aug. 2002.
[13] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed

automated random testing. In 2005 ACM Conference on

Programming Language Design and Implementation, pages

213–223, June 2005.
[14] A. Guha, S. Krishnamurthi, and T. Jim. Using static analysis

for Ajax intrusion detection. In 18th International World

Wide Web Conference, pages 561–570, Apr. 2009.
[15] G. Hoglund and G. McGraw. Exploiting Online Games:

Cheating Massively Distributed Systems. Addison-Wesley

Professional, 2007.
[16] E. Kaiser, W. Feng, and T. Schluessler. Fides: Remote

anomaly-based cheat detection using client emulation. In

16th ACM Conference on Computer and Communications

Security, Nov. 2009.
[17] Y. Lyhyaoui, A. Lyhyaoui, and S. Natkin. Online games:

Categorization of attacks. In International Conference on

Computer as a Tool (EUROCON), Nov. 2005.
[18] C. Mönch, G. Grimen, and R. Midtstraum. Protecting online

games against cheating. In 5th ACM Workshop on Network

and System Support for Games, Oct. 2006.
[19] J. Mulligan and B. Patrovsky. Developing Online Games:

An Insider’s Guide. New Riders Publishing, 2003.
[20] T. Schluessler, S. Goglin, and E. Johnson. Is a bot at the

controls? Detecting input data attacks. In 6th ACM Work-

shop on Network and System Support for Games, pages 1–6,

Sept. 2007.
[21] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit

testing engine for C. SIGSOFT Software Engineering Notes,

30:263–272, Sept. 2005.

[22] K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions:

From the abnormal to the normal and beyond. In Informa-

tion Hiding, 5th International Workshop, IH 2002, pages 1–

17, 2003.

[23] N. Tillmann and J. D. Halleux. Pex: White box test genera-

tion for .NET. In 2nd International Conference on Tests and

Proofs, pages 134–153, 2008.

[24] E. Ukkonen. Algorithms for approximate string matching.

Information and Control, 64(1–3), Mar. 1985.

[25] K. Vikram, A. Prateek, and B. Livshits. Ripley: Automati-

cally securing Web 2.0 applications through replicated exe-

cution. In 16th ACM Conference on Computer and Commu-

nications Security, Nov. 2009.

[26] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reduc-

ing, reusing and recycling constraints in program analysis.

In 20th ACM International Symposium on the Foundations

of Software Engineering, FSE, pages 58:1–11, 2012.

[27] W. Visser, C. S. Păsăreanu, and S. Khurshid. Test input gen-

eration with Java PathFinder. SIGSOFT Software Engineer-

ing Notes, 29:97–107, July 2004.

[28] D. Wagner and P. Soto. Mimicry attacks on host-based in-

trusion detection systems. In 9th ACM Conference on Com-

puter and Communications Security, Nov. 2002.

[29] M. Ward. Warcraft game maker in spying row, Oct. 2005.

http://news.bbc.co.uk/2/hi/technology/

4385050.stm.

[30] S. Webb and S. Soh. A survey on network game cheats and

P2P solutions. Australian Journal of Intelligent Information

Processing Systems, 9(4):34–43, 2008.

[31] J. Yan and B. Randell. A systematic classification of cheat-

ing in online games. In 4th ACM Workshop on Network and

System Support for Games, Oct. 2005.

[32] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. Engler. Au-

tomatically generating malicious disks using symbolic exe-

cution. In IEEE Symposium on Security and Privacy, May

2006.

[33] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasu-

pathy. SherLog: Error diagnosis by connecting clues from

run-time logs. In 15th International Conference on Architec-

tural Support for Programming Languages and Operating

Systems, pages 143–154, Mar. 2010.

[34] C. Zamfir and G. Candea. Execution synthesis: a technique

for automated software debugging. In 5th European Confer-

ence on Computer Systems, pages 321–334, Apr. 2010.

