
Server-side Verification of Client Behavior in Online Games

Darrell Bethea Robert A. Cochran Michael K. Reiter

University of North Carolina at Chapel Hill

{djb,rac,reiter}@cs.unc.edu

Abstract

Online gaming is a lucrative and growing industry,
but one that is slowed by cheating that compromises
the gaming experience and hence drives away players
(and revenues). In this paper we develop a technique
by which game developers can enable game operators to
validate the behavior of game clients as being consistent
with valid execution of the sanctioned client software.
Our technique employs symbolic execution of the client
software to extract constraints on client-side state im-
plied by each client-to-server message, and then uses
constraint solving to determine whether the sequence
of client-to-server messages can be “explained” by any
possible user inputs, in light of the server-to-client mes-
sages already received. The requisite constraints and
solving components can be developed either simultane-
ously with the game or retroactively for existing games.
We demonstrate our approach in two case studies: one
of the open-source game XPilot, and one of a game
similar to Pac-Man of our own design.

1 Introduction

Multi-player online games are very popular and prof-
itable, and are growing more so. Since 1996 the com-
puter game industry has quadrupled — in 2008 alone,
worldwide video-game software sales grew 20 percent
to $32 billion [26]. Estimates place revenue from on-
line games at $11 billion, with games such as World of
Warcraft, which has more than 10 million subscribers
worldwide, bringing in around $1 billion in revenue for
parent company Blizzard Entertainment [1, 34].

Since its inception, the online game industry has
been plagued by cheating of numerous types, in some
cases with financial repercussions to the game opera-
tor. Age of Empires and America’s Army are exam-
ples of online games that suffered substantial player
loss due to cheating [33], and for subscription games,

player loss translates directly to a reduction in rev-
enues. And game developers and operators are not the
only ones for whom the stakes are high. Hoglund and
McGraw [18] argue that “games are a harbinger of soft-
ware security issues to come,” suggesting that defenses
against game cheats and game-related security prob-
lems will be important techniques for securing future
massive distributed systems of other types.

In this paper, we develop an approach to detect a
significant class of cheats in which a player changes a
game client to allow behaviors that a sanctioned game
client would not allow; to accomplish this, the player
might modify the client executable or in-memory data
structures of a running client, for example. Today, the
most robust defense against such client modification is
to maintain authoritative state at the server, beyond
the reach of direct manipulation by cheaters. This,
however, exacts a heavy price from game operators,
owing to the increased bandwidth use that results due
to sending low-level client events (in the limit, every
player input) to the server for accessing such state and
conveying the effects back to clients. As bandwidth
is one of the largest costs for large-scale game opera-
tors [29] and also a recurring one, this tension between
bandwidth use and cheat prevention is problematic:

In the US and European markets, a good
goal to shoot for is 4-6 kilobits per second
(kps)/player or less. ... If you can get the
bit rate down to 2kps, you’re “golden.” It’s
hard to see how that can happen, however,
without putting dangerous amounts of data
directly into the client, which is just asking
for trouble from talented cheaters and hack-
ers. [29, p. 112]

The movement of games to all manners of devices using
wireless, volume-priced communication only reinforces
the importance of keeping bandwidth utilization to a
minimum. Moreover, even with the amount of detailed
client information collected at the server, server-side

checking today is heuristic (and thus potentially in-
complete) and manually programmed (and thus effort-
intensive):

Players love to cheat — especially in online
games ... be ready to add server-side support
to prevent user cheating with methods that
you were not able to predict. [17]

In this paper we demonstrate a technique to detect
any type of cheating that causes the client to exhibit
behavior, as seen by the server, that is inconsistent
with the sanctioned client software and the game state
known at the server. That is, our approach discerns
whether there was any possible sequence of user inputs
to the sanctioned client software that could have given
rise to each message received at the server, given what
the server knew about the game client based on pre-
vious messages from the client and the messages the
server sent to the client. In doing so, our approach
remedies the previously heuristic and manual construc-
tion of server-side checks. Moreover, our approach po-
tentially enables new game designs that reduce band-
width use by placing more authoritative state at the
client, since our approach verifies that the client’s be-
havior is consistent with legal management of that
state. While reducing the interaction with the client
will generally increase the computational cost of our
verification, the verification need not be done on the
critical path of game play, and can be performed se-
lectively (e.g., only for suspected or winning players).
Moreover, it can benefit from the dramatic growth of
inexpensive computing power (larger numbers of cores)
in game-operator server farms.

Our strategy exploits the fact that game clients are
often structured as an event loop that processes user
inputs, server messages, or other events in the context
of current game state, and then sends an update to the
server on the basis of its processing. We symbolically
execute the loop to derive a predicate that character-
izes the effects of the loop, and specifically the update
sent to the server, as a function of its inputs and game
state. By partially instantiating these predicates on the
basis of the actual messages the server receives from a
client and what the server previously sent to the client,
a verifier can then use a constraint solver to deter-
mine whether the resulting predicate is satisfiable. If
so, then this indicates that the messages are consistent
with proper client execution — i.e., there were some
user inputs that could have yielded these messages.

We demonstrate our approach with two case studies.
In the first, we apply our technique to the open-source
game XPilot. Because XPilot was developed as is com-
monplace today, i.e., with low-level client events being

sent to the server, this case study does not fully illus-
trate the strengths of our approach. However, it does
demonstrate the (few) ways in which we found it nec-
essary to adapt XPilot to use our technique efficiently
and to allow for the realities of modern gaming, such
as message loss on the network. For the second case
study, we use a game of our own design that is similar
to Pac-Man but that has features to better exercise our
technique. Together, these two case studies illustrate
the limits and benefits of our approach and serve as
guidance for game developers who are considering us-
ing this technique for detecting cheating in their games.

2 Related Work

Detecting the misbehavior of remote clients in a
client-server application is an area that has received
considerable attention. One strategy, of which ours is
a special case, is to construct a model of proper client
behavior against which actual client behaviors are com-
pared. Giffin et al. [14] developed such an approach
for validating remote system calls back to the home
server from computations outsourced to (potentially
untrusted) worker machines. In that work, remote sys-
tem calls are compared to a control flow model gener-
ated from the binary code of the outsourced computa-
tion, specifically either a non-deterministic finite-state
automaton or a push-down automaton that mirrors the
flow of control in the executable. A more recent exam-
ple is work by Guha et al. [16]: through static analysis
of the client portion of Ajax web applications (HTML
and JavaScript), their system constructs a control-flow
graph for the client that describes the sequences of
URLs that the client-side program can invoke. Any
request that does not conform to this graph is then
flagged as potentially malicious.

The technique we develop here follows this
paradigm. We similarly use analysis (in our case, of
source code) to develop a model of client behavior,
against which inputs (messages from the client) are
compared. The primary differentiator of our approach
from previous works is soundness: only sequences of
client messages that could have actually been produced
through valid client execution, on the inputs sent by the
server, will be accepted. This precision is accomplished
though our use of symbolic execution to derive the com-
plete implications of each message value to the client-
side state. While this would hardly be tractable for
any arbitrary client-server application, the control-loop
structure of game clients and the frequent communica-
tion that is typically necessary for game play bounds
the amount of uncertainty that the verifier faces in
checking the client’s messages.

A different approach to protecting against client
misbehavior in client-server settings is to ensure that
clients manage no authoritative state that could af-
fect the server or the larger application; as discussed in
the introduction, this is commonplace today for games.
A recent system for implementing web applications to
have this property is Swift [9], for example. The ex-
treme of this approach is for the client to simply for-
ward all unseen inputs (e.g., user inputs) to the server,
where a trusted copy of the client-side computation
acts on these inputs directly; e.g., this is implemented
for Web 2.0 applications in the Ripley system [35]. In
contrast, our approach detects any client behavior that
is inconsistent with legal client execution, without re-
quiring that all low-level events be sent to the server.
Our approach also represents a middle ground in terms
of programmer effort between automatic partitioning,
which can require extensive manual annotation of the
program [9], and client replication on the server, which
requires none. In our case studies, we found that our
approach was largely automatic but did require manual
tuning in some cases to be efficient.

If the preceding approach can be viewed as a “pes-
simistic” way of eliminating trust in the client to man-
age authoritative state, one might say an “optimistic”
version was proposed by Jha et al. [21]. Instead of mov-
ing authoritative state to a trusted server, a trusted
audit server probabilistically audits the management
of authoritative state at the client. In this approach,
each game client periodically commits to its complete
state by sending a cryptographic hash of it to the audit
server. If later challenged by the audit server, the client
turns over the requested committed state and all infor-
mation (client-to-server and server-to-client updates,
user inputs) needed to re-trace and validate the client’s
behavior between this state and the next committed
state. This approach, however, introduces additional
costs to the client in the form of increased computa-
tion (to cryptographically hash game state, which can
be sizable), storage (to retain the information needed to
respond to an audit), and bandwidth (to transmit that
information in the event of an audit); our approach in-
troduces none of these, and can even enable bandwidth
savings. Moreover, verification of clients in this scheme
must be done during game play, since clients cannot re-
tain the needed information forever. In contrast, our
approach supports auditing at any time in the future by
the game operator, provided that it records the needed
messages (to which it already has access).

Other work on defeating cheating specifically in on-
line games comes in many flavors. Useful surveys of
the problem are due to Yan and Randell [40], Ly-
hyaoui et al. [25], and Webb and Soh [38]. One com-

mon approach to defeat a variety of cheats involves
augmenting the client-side computer with monitoring
functionality to perform cheat detection (e.g., Punk-
Buster and [11, 12, 23, 28, 31]). Such approaches re-
quire consideration of how to defend this functionality
from tampering, and some commercial examples have
met with resistance from the user community (e.g.,
World of Warcraft’s Warden, see [37]). In contrast, our
approach requires that no monitoring functionality be
added to clients. Other work focuses on wholly differ-
ent cheats than we consider here. One example is game
“bots” that perform certain repetitive or precise tasks
in place of human gamers [7, 31, 39, 8, 27]. Bots that
utilize the sanctioned game client to do so (as many
do) will go undetected by our scheme, since the client
behavior as seen by the server could have been per-
formed by the sanctioned game client on inputs from a
real human user (albeit an especially skilled or patient
one). Another cheat that has received significant at-
tention occurs when clients delay or suppress reporting
(and choosing) their own actions for a game step un-
til after learning what others have chosen in that step
(e.g., [2, 10]). Such attacks can also go unnoticed by
our techniques, if such delay or suppression could be
explained by factors (e.g., network congestion) other
than client modification. Our techniques are compati-
ble with all proposed defenses of which we are aware for
both game bots and delay/suppression, and so can be
used together with them. Finally, various works have
examined security specifically for peer-to-peer games,
e.g., using peer-based auditing [15, 20, 22]. Our tech-
nique may be applicable in some peer-to-peer auditing
schemes, but we focus on the client-server setting here.

Our approach to validating client-side execution uti-
lizes symbolic execution, a technique that has seen
significant interest in the security community for gen-
erating vulnerability signatures [3], generating inputs
that will induce error conditions [6, 41], automat-
ing mimicry attacks [24], and optimizing privacy-
preserving computations [36], to name a few. A re-
cent approach to generating weakest preconditions has
shown promise as a more efficient alternative to sym-
bolic execution in some applications [4], and we plan
to investigate the application of this technique to our
problem to make client checking even more efficient.

3 Goals, Assumptions and Limitations

The defense that we develop in this paper addresses
a class of game cheats that Webb and Soh term Invalid
commands:

Usually implemented by modifying the game
client, the invalid command cheat results in

the cheater sending commands that are not
possible with an unmodified game client. Ex-
amples include giving the cheater’s avatar
great strength or speed. This may also be im-
plemented by modifying the game executable
or data files. Many games suffer this form
of cheating, including console games such as
Gears of War. [38, §4.2.3]

Importantly, our technique will even detect commands
that are invalid in light of the history of the client’s
previous behaviors witnessed by the game server, even
if those commands could have been valid in some other
execution. Simply put, our approach will detect any
client game play that is impossible to observe from the
sanctioned client software.

We designed our cheat detection technique primarily
for use by game developers. As we present and eval-
uate our approach, it requires access to source code
for the game, though potentially a similar approach
could be developed with access to only the game ex-
ecutable. The approach should be attractive to game
developers because it can save them significant effort
in implementing customized server-side verification of
client behaviors. Our approach is comprehensive and
largely automatic; in our case study described in §5, we
needed only modest adaptations to an existing open-
source game.

In order for detection to be efficient, our technique
depends on certain assumptions about the structure of
the game client. We assume in this paper that the
game client is structured as a loop that processes in-
puts (user inputs, or messages from the game server)
and that updates the game server about certain as-
pects of its status that are necessary for multiplayer
game play (e.g., the client’s current location on a game
map, so that the server can update other players in the
game with that location). Updates from the client to
the server need not be in exact one-to-one correspon-
dence to loop iterations. However, as the number of
loop iterations that execute without sending updates
increases, the uncertainty in the verifier’s “model” of
the client state also generally increases. This increase
will induce greater server-side computation in verifying
that future updates from the client are consistent with
past ones. As we will see in §5, it is useful for these up-
dates from the client to indicate which server-to-client
messages the client has received, but importantly, the
information sent by the client need not include the user
inputs or a full account of its relevant state. Indeed, it
is this information that a game client would typically
send today, and that we permit the client to elide in
our approach.

Due to the scope of what it tries to detect, how-
ever, our technique has some limitations that are im-
mediately evident. First, our technique will not detect
cheats that are permitted by the sanctioned client soft-
ware due to bugs. Second, modifications to the game
client that do not change its behavior as seen at the
server will go unnoticed by our technique. For example,
any action that is possible to perform will be accepted,
and so cheating by modifying the client program to
make difficult (but possible) actions easy will go un-
detected. Put in a more positive light, however, this
means that our technique has no false alarms, assum-
ing that symbolic execution successfully explores all
paths through the client. As another example, a client
modification that discloses information to the player
that should be hidden, e.g., such as a common cheat
that uncovers parts of the game map that should be
obscured, will go unnoticed by our technique. In the
limit, a player could write his own version of the game
client from scratch and still go undetected, provided
that the behaviors it emits, as witnessed by the server,
are a subset of those that the sanctioned client software
could emit.

4 Our Approach

Our detection mechanism analyzes client output (as
seen by the game server) and determines whether that
output could in fact have been produced by a valid
game client. Toward that end, a key step of our ap-
proach is to profile the game client’s source code using
symbolic execution and then use the results in our anal-
ysis of observed client outputs. We begin with a sum-
mary of symbolic execution in §4.1, and then discuss its
application in our context in §4.2–§4.6. The symbolic
execution engine that we use in our work is klee [5],
with some modifications to make it more suitable for
our task.

Before we continue, we clarify our use of certain
terminology. Below, when we refer to a valid client,
we mean a client that faithfully executes a sanctioned
game-client program (and does not interfere with its
behavior). Values or messages are then valid if they
could have been emitted by a valid game client.

4.1 Symbolic Execution

Symbolic execution is a way of “executing” a pro-
gram while exploring all execution paths, for example
to find bugs in the program. Symbolic execution works
by executing the software with its initial inputs spe-
cially marked so they are allowed to be “anything” —

the memory regions of the input are marked as sym-
bolic and are not given any initial value. The program
is executed step-by-step, building constraints on the
symbolic variables based on the program’s operations
on those variables. For example, if the program sets
a ← b + c, where a, b, and c are all marked as sym-
bolic, then after the operation, there will be a new
logical constraint on the value of a that states that it
must equal the sum of b and c. When the program
conditionally branches on a symbolic value, execution
forks and both program branches are followed, with
the true branch forming a constraint that the symbolic
value evaluates to true and the false branch forming
the opposite constraint. Using this strategy, symbolic
execution attempts to follow every possible code path
in the target program, building a constraint for each
one that must hold on execution of that path.

Symbolic execution can help locate software bugs by
providing constraints that enable a constraint solver
(klee uses stp [13]) to generate concrete inputs that
cause errors to occur. For example, if execution reaches
an error condition (or a state thought to be “impossi-
ble”), then a constraint solver can use the constraints
associated with that path to solve for a concrete input
value which triggers the error condition. Having a con-
crete input that reliably reproduces an error is a great
help when trying to correct the bug in the source code.

4.2 Generating Constraints

The first step of our technique is identifying the
main event loop of the game client and all of its as-
sociated client state, which should include any global
memory, memory that is a function of the client input,
and memory that holds data received from the net-
work. These state variables are then provided to the
symbolic execution tool, which is used to generate a
constraint for each path through the loop in a single
round. These constraints are thus referred to as round
constraints.

For example, consider the toy game client in Fig-
ure 1(a). This client reads a keystroke from the user
and either increments or decrements the value of the
location variable loc based on the key that was read.
The new location value is then sent to the server, and
the client loops to read a new key from the user. Al-
though a toy example, one can imagine it forming the
basis for a Pong client.

To prepare for symbolic execution, we modify the
program slightly, as shown in Figure 1(b). First, we
initialize the variable key not with a concrete input
value read from the user (line 103) but instead as an
unconstrained symbolic variable (line 203). We then

100: loc ← 0;
101:
102: while true do

103: key ← readkey();
104: if key = ESC then

105: endgame();
106: else if key = ‘↑’ then

107: loc ← loc + 1;
108: else if key = ‘↓’ then

109: loc ← loc − 1;
110: end if

111: sendlocation(loc);
112: end while

(a) A toy game client . . .

200: prev loc ← symbolic;
201: loc ← prev loc;
202: while true do

203: key ← symbolic;
204: if key = ESC then

205: endgame();
206: else if key = ‘↑’ then

207: loc ← loc + 1;
208: else if key = ‘↓’ then

209: loc ← loc − 1;
210: end if

211: breakpoint;
212: end while

(b) . . . instrumented to run
symbolically

Figure 1. Example game client

replace the instruction to send output to the server
(line 111) with a breakpoint in the symbolic execution
(line 211). Finally, we create a new symbolic state
variable, prev loc (line 200), which will represent the
game state up to this point in the execution. The state
variable loc will be initialized to this previous state
(line 201).

Symbolically executing this modified program, we
see that there are four possible paths through the main
loop that the client could take in any given round. In
the first possible path, key is ESC, and the game ends.
Note that this branch never reaches the breakpoint.
The second and third possible paths are taken when
key is equal to ‘↑’ and ‘↓’, respectively. The final path
is taken when key is none of the aforementioned keys.
These last three paths all terminate at the breakpoint.

Via symbolic execution, the verifier can obtain the
constraints for all symbolic variables at the time each
path reached the breakpoint. Because we artificially
created prev loc during the instrumentation phase, it
remains an unconstrained symbolic variable in all three
cases. The state variable loc, however, is constrained
differently on each of the three paths. In the case when
key is equal to ‘↑’, symbolic execution reports loc =
prev loc+1 as the only constraint on loc. When key is
equal to ‘↓’, the constraint is that loc = prev loc − 1.
And when key is not ‘↑’, ‘↓’, or ESC, the constraint is
that loc = prev loc.

Therefore, there are three possible paths that can
lead to a message being sent to the server. If the server
receives a message from a client — and the client is a
valid client — then the client must have taken one of
these three paths. Since each path introduces a con-
straint on the value of loc as a function of its previous
value, the verifier can take the disjunction of these con-
straints, along with the current and previous values of
loc (which the server already knows) and see if they

are all logically consistent. That is, the verifier can
check to see if the change in values for loc match up
to a possible path that a valid game client might have
taken. If so, then this client is behaving according to
the rules of a valid game client. The disjunction of
round constraints in this case is:

(loc = prev loc + 1) ∨

(loc = prev loc − 1) ∨

(loc = prev loc) (1)

For example, suppose the verifier knows that the
client reported on its previous turn that its loc was 8.
If the client were to then report its new location as
loc = 9, the verifier could simply check to see if the
following is satisfiable:

(prev loc = 8)∧ (loc = 9)∧ [(loc = prev loc + 1) ∨
(loc = prev loc − 1) ∨
(loc = prev loc)]

Of course, it is satisfiable, meaning that the new value
loc = 9 could in fact have been generated by a valid
game client. Suppose, though, that in the next turn,
the client reports his new position at loc = 12. Follow-
ing the same algorithm, the verifier would check the
satisfiability of

(prev loc = 9)∧(loc = 12)∧[(loc = prev loc + 1) ∨
(loc = prev loc − 1) ∨
(loc = prev loc)]

Because these round constraints are not satisfiable, no
valid game client could have produced the message
loc = 12 (in this context). Therefore, the verifier can
safely conclude that the sender of that message is run-
ning an incompatible game client — is cheating.

There are also constraints associated with the vari-
able key. We have omitted these here for clarity, show-
ing only the constraints on loc. We have also omitted
the constraints generated by the preamble of the loop,
which in this case are trivial (“loc = 0”) but in general
would be obtained by applying symbolic execution to
the preamble separately. Had there been any random
coin flips or reading of the current time, the variables
storing the results would also have been declared sym-
bolic, and constraints generated accordingly. While file
input (e.g., configuration files) could also be declared
symbolic, in this paper we generally assume that such
input files are known to the verifier (e.g., if necessary,
sent to the server at the beginning of game play), and
so treat these as concrete.

4.3 Accumulating Constraints

While the branches taken by a client in each round
may not be visible to the verifier, the verifier can keep
a set of constraints that represent possible client execu-
tions so far. Specifically, the verifier forms a conjunc-
tion of round constraints that represents a sequence of
possible paths through the client’s loop taken over mul-
tiple rounds; we call this conjunction an accumulated
constraint and denote the set of satisfiable accumulated
constraints at the end of round i by Ci. This set corre-
sponds to the possible paths taken by a client through
round i.

The verifier updates a given set Ci−1 of accumulated
constraints upon receiving a new client message msgi

in round i. To do so, the verifier first combines the val-
ues given in msgi with each round constraint for round
i, where each symbolic variable in the round constraint
represents client state for round i, and the round con-
straint characterizes those variables as a function of the
variables for round i − 1. The verifier then combines
each result with each accumulated constraint in Ci−1

and checks for satisfiability.

For example, let us parameterize the round con-
straints for the toy example in §4.2 with the round
number j:

G(j) = { locj = locj−1 + 1 ,

locj = locj−1 − 1 ,

locj = locj−1 }

Note that each member of G(j) corresponds to a dis-
junct in (1). If in round i = 2 the server receives the
message msg2 = 9 from the client, then it generates
the constraint M = “loc2 = 9”, because the value “9”
in the message represents information corresponding to
the variable loc in the client code. Then, combining M

with each G ∈ G(2) gives the three constraints:

loc2 = 9 ∧ loc2 = loc1 + 1
loc2 = 9 ∧ loc2 = loc1 − 1
loc2 = 9 ∧ loc2 = loc1

Note that the combination of the client message with
each round constraint involves both instantiation (e.g.,
using j = 2 above) as well as including the specific
values given in the client message at that round (i.e.,
loc2 = 9 above).

These three round constraints each represent a pos-
sible path the client might have taken in the second
round. The verifier must therefore consider each of
them in turn as if it were the correct path. For exam-
ple, if C1 = {loc1 = 8}, then the verifier can use each

300: Ci ← ∅
301: M ← msgToConstraint(msg

i
)

302: for G ∈ G(i) do

303: for C ∈ Ci−1 do

304: C′ ← C ∧ G ∧ M

305: if isSatisfiable(C′) then

306: Ci ← Ci ∪ {C′}
307: end if

308: end for

309: end for

Figure 2. Construction of Ci from Ci−1 and msgi

round constraint to generate the following possible ac-
cumulated constraints:

loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1 + 1]
loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1 − 1]
loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1]

Since the second and third constraints are not satisfi-
able, however, this reduces to

C2 = {loc1 = 8 ∧ [loc2 = 9 ∧ loc2 = loc1 + 1]}

= {loc1 = 8 ∧ loc2 = 9}

The basic algorithm for constructing Ci from Ci−1

and msgi is thus as shown in Figure 2. In this fig-
ure, msgToConstraint simply translates a message to
the constraint representing what values were sent in the
message. It is important to note that while |Ci| = 1 for
each i in our toy example, this will not generally be the
case for a more complex game. In another game, there
might be many accumulated constraints represented in
Ci−1, each of which would have to be extended with
the possible new round constraints to produce Ci.

4.4 Constraint Pruning

Every accumulated constraint in Ci is a conjunction
C = c1 ∧ . . .∧ cn (or can be written as one, in conjunc-
tive normal form). In practice, constraints can grow
very quickly. Even in the toy example of the previ-
ous section, the accumulated constraint in C2 has one
more conjunct than the accumulated constraint in C1.
As such, the verifier must take measures to avoid du-
plicate constraint checking and to reduce the size of
accumulated constraints.

First, the verifier partitions the conjuncts of each
new accumulated constraint C′ (line 304) based on
variables (e.g., loc2) referenced by its conjuncts.
Specifically, consider the undirected graph in which
each conjunct ck in C′ is represented as a node and
the edge (ck, ck′) exists if and only if there is a variable
that appears in both ck and ck′ . Then, each connected

component of this graph defines a block in the parti-
tion of C′. Because no two blocks for C′ share variable
references, the verifier can check each block for sat-
isfiability independently (line 305), and each block is
smaller, making each such check more efficient. And,
since some accumulated constraints C′ will share con-
juncts, caching proofs of satisfiability for previously-
checked blocks will allow shared blocks to be confirmed
as satisfiable more efficiently.

Second, because round constraints refer only to vari-
ables in two consecutive rounds — i.e., any G ∈ G(j)
refers only to variables for round j and j−1 — the for-
mulas G and M in line 304 will refer only to variables
in rounds i and i − 1. Therefore, if there are blocks of
conjuncts for C′ in line 304 that contain no references
to variables for round i, then these conjuncts cannot
be rendered unsatisfiable in future rounds. Once the
verifier determines that this block of conjuncts is satis-
fiable (line 305), it can safely remove the conjuncts in
that block from C′.

4.5 Server Messages

Round constraints are not a function of only user in-
puts (and potentially random coin flips and time read-
ings), but also messages from the server that the client
processes in that round. We have explored two imple-
mentation strategies for accounting for server messages
when generating round constraints:

• Eager: In this approach, eager round constraints are
generated with the server-to-client messages marked
symbolic in the client software, just like user inputs.
Each member of G(i) is then built by conjoining an
eager round constraint with one or more conjuncts
of the form “svrmsg = m”, where svrmsg is the
symbolic variable for a server message in the client
software, and m is the concrete server message that
this variable took on in round i. We refer to this
approach as “eager” since it enables precomputation
of eager round constraints prior to verification, but
in doing so also computes them for paths that may
never be traversed in actual game play.

• Lazy: In this approach, lazy round constraints are
generated from the client software after it has been
instantiated with the concrete server-to-client mes-
sages that the client processed in that round; these
round constraints for round i then constitute G(i)
directly. Since the server messages are themselves
a function of game play, the lazy round constraints
cannot be precomputed (as opposed to eager round
constraints) but rather must be computed as part of
verification. As such, the expense of symbolic exe-
cution is incurred during verification, but only those

paths consistent with server messages observed dur-
ing game play need be explored.

In either case, it is necessary that the server log the
messages it sent and that the verifier know which of
these messages the client actually processed (versus,
say, were lost). In our case study in §5, we will discuss
how we convey this information to the server, which it
records for the verifier.

As discussed above, the eager approach permits
symbolic execution to be decoupled from verification,
in that eager round constraints can be computed in
advance of game play and then augmented with ad-
ditional conjuncts that represent server messages pro-
cessed by the client in that round. As such, the gen-
eration of round constraints in the eager approach is
a conceptually direct application of a tool like klee

(albeit one fraught with game-specific challenges, such
as those we discuss in §5.4.1). The lazy approach,
however, tightly couples the generation of round con-
straints and verification; below we briefly elaborate on
its implementation.

To support the lazy approach, we extend klee by
building a model of the network that permits it access
to the log of messages the client processed (from the
server) in the current round i and any message the
client sent in that round. Below, we use the term active
path to refer to an individual, symbolically executing
path through the client code. Each active path has
its own index into the message log, so that each can
interact with the log independently.

To handle server-to-client messages from the log, we
intercept the recv() system call and instead call our
own replacement function. This function first checks
to see that the next message in the network log is in-
deed a server-to-client message. If it is, we return the
message and advance this active path’s pointer in the
log by one message. Otherwise, this active path has
attempted more network reads in round i than actu-
ally occurred in the network log prior to reaching the
breakpoint corresponding to a client-message send. In
this case, we return zero bytes to the recv() call, in-
dicating that no message is available to be read. Upon
an active path reaching the breakpoint (which corre-
sponds to a client send), if the next message in the
log is not a client-to-server message, then this active
path has attempted fewer network reads than the log
indicates, and it is terminated as invalid. Otherwise,
the round constraint built so far is added to G(i) and
the logged client message is used to instantiate the new
conjunct M in line 301 of Figure 2.

4.6 Scaling to Many Clients

Implementing our technique on a real-world online
game with a large user base might require its own spe-
cial implementation considerations. As we will see in
§5, our eager and lazy implementations are not yet fast
enough to perform validation on the critical path of
game play. So, the game operator must log all the
messages to and from clients that are needed to vali-
date game play offline. That said, the need for logging
will not be news to game operators, and they already
do so extensively:

LOG EVERYTHING, and offer a robust sys-
tem for reviewing the logs. When hunting
down bugs and/or reviewing player cries of
foul, nothing makes the job of the GM eas-
ier than knowing that he/she has perfect in-
formation and can state with 100% accu-
racy when a player isn’t telling the whole
truth. [32]

As such, our approach introduces potentially little
additional logging to what game operators already per-
form. Nevertheless, to minimize this overhead, game
operators might use a log-structured file system [30].
Such file systems write data sequentially in a log-like
structure and are optimized for small writes (as would
be the case when logging client and server messages).
Log-structured file systems have been implemented for
NetBSD and Linux, for example.

Once the messages are logged, they can be searched
later to extract a specific game trace to be checked
(e.g., for a winning player). The checking itself can be
parallelized extensively, in that the trace of a player
can be checked independently of others’, and even
blocks within accumulated constraints C′ (see §4.4) can
be checked in parallel. Traces can also be partially
checked, by starting in the middle of a trace, say at
round i with client-to-server message msgi, and check-
ing from that point forward (i.e., with Ci−1 = {true}).
Of course, while such a partial check can validate the
internal consistency of the part of the trace that is
checked, it will not detect inconsistencies between the
validated part and other parts.

5 Case Study: XPilot

In our first case study, we apply our technique to
XPilot, an open-source multiplayer game written in
about 150,000 lines of C code. XPilot uses a client-
server architecture that has influenced other popu-
lar open source games. For example, the authors of

Freeciv used XPilot’s client-server architecture as a ba-
sis for the networking in that game. XPilot was first
released over 15 years ago, but it continues to en-
joy an active user base. In fact, in July 2009, 7b5
Labs released an XPilot client for the Apple iPhone
and Apple iPod Touch (see http://7b5labs.com/

xpilotiphone), which is the most recent of several
forks and ports of the XPilot code base over the years.
We focus on one in particular called XPilot NG (XPilot
Next Generation).

5.1 The Game

The game’s style resembles that of Asteroids, in
which the player controls an avatar in the form of a
spaceship, which she navigates through space, avoid-
ing obstacles and battling other ships. But XPilot
adds many new dimensions to game play, including
computer-controlled players, several multiplayer modes
(capture the flag, death match, racing, etc.), network-
ing (needed for multiplayer), better physics simulation
(e.g., accounting for fuel weight in acceleration), and
updated graphics. In addition, XPilot is a highly con-
figurable game, both at the client and the server. For
example, clients can set key mappings, and servers can
configure nearly every aspect of the game (e.g., ship
mass, initial player inventory, probability of each type
of power-up appearing on the map, etc.).

As we have discussed, developers of today’s net-
worked games design clients with little authoritative
state in order to help address cheating. In keeping with
that paradigm, XPilot was written with very little such
state in the client itself. Despite this provision, there
are still ways a malicious user can send invalid mes-
sages in an attempt to cheat. In XPilot, there are some
sets of keys that the client should never report press-
ing simultaneously. For example, a player cannot press
the key to fire (KEY FIRE SHOT) while at the same time
pressing the key to activate his shield (KEY SHIELD). A
valid game client will filter out any attempts to do so,
deactivating the shield whenever a player is firing and
bringing it back online afterward. However, an invalid
game client might attempt to gain an advantage by
sending a keyboard update that includes both keys.
As it happens, the server does its own (manually con-
figured) checking and so the cheat fails in this case,
but the fact that the client behavior is verifiably in-
valid remains. There are numerous examples of similar
cheats in online games that servers fail to catch, either
because of programming errors or because that partic-
ular misuse of the protocol was unforeseen by the game
developers. In our evaluations, we confirmed that our
technique detects this attempt to cheat in XPilot, as

expected. This detection was a direct result of the logic
inherent in the game client, in contrast to the manually
programmed rule in the XPilot server.

At the core of the architecture of the XPilot client is
a main loop that reads input from the user, sends mes-
sages to the server, and processes new messages from
the server. In §5.3 and §5.4, we describe the verifica-
tion of XPilot client behavior by generating lazy round
constraints and eager round constraints for this loop,
respectively. However, we first describe modifications
we made to XPilot, in order to perform verification.

5.2 Game Modifications

Message acknowledgments Client-server commu-
nication in XPilot uses UDP traffic for its timeliness
and decreased overhead — the majority of in-game
packets are relevant only within a short time after
they are sent (e.g., information about the current game
round). For any traffic that must be delivered reliably
(e.g., chat messages between players), XPilot uses a
custom layer built atop UDP. Due to XPilot’s use of
UDP and the fact that it can process arbitrary numbers
of messages in a single client loop, we added to XPi-
lot an acknowledgement scheme to inform the server
of which inbound messages the client processed in each
loop iteration and between sending its own messages to
the server. The server logs this information for use by
the verifier. There are many possible efficient acknowl-
edgement schemes to convey this information; the one
we describe in Appendix A assumes that out-of-order
arrival of server messages is rare.

These acknowledgments enable the server to record
a log of relevant client events in the order they hap-
pened (as reported by the client). For each client-
to-server message that the server never received, the
verifier simply replaces the constraint M implied by
the missing message (see line 301 of Figure 2) with
M = true.

Floating-point operations XPilot, like most
games of even moderate size, includes an abundance of
floating-point variables and math. However, it is not
currently possible to generate constraints on floating-
point numbers with klee. Therefore, we implement
XPilot’s floating-point operations using a simple fixed-
point library of our own creation. As a result, symbolic
execution on the XPilot client produces constraints
from this library for every mathematical operation in
the client code involving a symbolic floating-point num-
ber. This, in turn, inflates the verification speeds re-
ported in §5.4, in particular.

Client trimming The XPilot client, like presumably
any game client, contains much code that is focused on

enhancing the user gaming experience but that has no
effect on the messages that the client could send to
the server. To avoid analyzing this code, we trimmed
much of it from the game client that we subjected to
analysis. Below we summarize the three classes of such
code that we trimmed. Aside from these three types
of code, we also trimmed mouse input-handling code,
since all game activities can be performed equivalently
using the keyboard.

First, several types of user inputs impact only the
graphical display of the game but have no effect on the
game’s permissible behaviors as seen by the server. For
example, one type of key press adjusts the display of
game-play statistics on the user’s console. As such, we
excised these inputs from the client software for the
purposes of our analysis.

Second, there are certain “reliable” messages the
server sends the client (using the custom reliable-
delivery protocol built over UDP). Reliable traffic is
vital to the set-up and tear-down of games and game
connections, but once play has begun, reliable messages
are irrelevant for game play. Types of messages the
server sends reliably are in-game chat messages (both
among players and from the server itself), information
about new players that have joined, and score updates,
all of which are relatively infrequent and purely infor-
mational, in the sense that their delivery does not alter
the permissible client behaviors. As such, we ignored
them for the purpose of our analysis.

Third, klee is built upon llvm and requires the
input executable to be compiled into the llvm inter-
mediate representation (IR). Like all software, XPilot
does not execute in isolation and makes use of external
libraries; not all of these were compiled into llvm IR.
Specifically, the graphics library was not symbolically
executed by klee, and instead any return values from
graphics calls that XPilot later needed were simply de-
clared symbolic.

5.3 Verification with Lazy Round Constraints

In this section we measure the performance of verifi-
cation using lazy round constraints. As discussed in §4,
lazy round constraints are generated once the client-to-
server and server-to-client messages are known. Thus,
the only unknown inputs to the game client when gen-
erating lazy round constraints are the user inputs and
time readings (and random coin flips, but these do not
affect server-visible behavior in XPilot).

In generating lazy round constraints, we departed
slightly from the description of our approach in §4,
in that we inserted multiple breakpoints in the client
event loop, rather than only a single breakpoint. Each

breakpoint provides an opportunity to prune accumu-
lated constraints and, in particular, to delete multi-
ple copies of the same accumulated constraint. This is
accomplished using a variant of the algorithm in Fig-
ure 2, using constraints derived from prefixes of the
loop leading to the breakpoint, in place of full round
constraints. Some of these extra breakpoints corre-
spond to the (multiple) send locations in XPilot’s loop.
Aside from this modification, we implemented our ap-
proach as described in §4.

We ran our lazy client verifier on a 2,000-round XPi-
lot game log (about a minute of game-play time) using
a machine with a 2.67GHz processor. Figure 3(a) de-
scribes the per-round validation cost (in seconds) us-
ing a box-and-whiskers plot per 125 rounds: the box
illustrates the 25th, 50th, and 75th percentiles; the
whiskers cover points within 1.5 times the interquar-
tile range; and circles denote outliers. The per-round
verification times averaged 14.7s with a standard devi-
ation of 3.8s. As an aside, in every round, there was ex-
actly one remaining satisfiable accumulated constraint,
indicating that, without client state, there is little am-
biguity at the verifier about exactly what is happening
inside the client program, even from across the net-
work.

By employing an XPilot-specific optimization, we
were able to significantly improve verification perfor-
mance. After the trimming described in §5.2, the user
input paths that we included within our symbolic exe-
cution of the client each caused another client-to-server
message to be sent, and so the number of such sends in
a round indicates to the verifier an upper bound on the
number of user inputs in that round. As such, we could
tune the verifier’s symbolic execution to explore only
paths through the client where the number of invoca-
tions of the input-handling function equals the num-
ber of client messages for this round in the log. This
optimization yields the graph in Figure 3(b). Notice
that there are three distinct bands in the graph, corre-
sponding to how many times the input-handling func-
tion within the game client was called. The first band
contains rounds which called the input handler zero
times and represents the majority (90.1%) of the to-
tal rounds. These rounds were the quickest to process,
with a mean cost of 26.1ms and a standard deviation of
10.0ms. The next-largest band (5.1%) contains rounds
which called the input handler only once. These rounds
took longer to process, with a mean of 3.38s and a stan-
dard deviation of 650ms. The final band represents
rounds with more than one call to the input-handling
function. This band took the longest to process (14.9s,
on average), but it was also the smallest, representing
only 4.1% of all rounds.

Round

V
er

ifi
ca

tio
n

C
os

t (
se

co
nd

s)

0 500 1000 1500 2000

20
10

5

(a) Cost per round (lazy)

Round

V
er

ifi
ca

tio
n

C
os

t (
se

co
nd

s)

0 500 1000 1500 2000

0.
01

0.
1

1
10

(b) Cost per round (lazy) with XPilot-
specific optimizations

Figure 3. Verification cost per round us-
ing lazy round constraints, while checking a
2,000-round XPilot game log

5.4 Verification with Eager Round Constraints

In this section we discuss verification of XPilot using
eager constraint generation. Recall that eager round
constraints are precomputed from the sanctioned client
software without knowledge of the messages the client
will process in any given loop iteration. However, we
found this approach to require substantial manual tun-
ing to be practical, as we describe below.

5.4.1 Manual Tuning

A direct application of our method for generating ea-
ger round constraints for the XPilot client loop would
replace the user key press with symbolic input and any
incoming server message with a symbolic buffer, and
subject the resulting client program to klee. Such a

direct application, however, encountered several diffi-
culties. In this section we describe the main difficulties
we encountered in this direct approach and the primary
adaptations that we made in order to apply it to the
XPilot client. These adaptations highlight an impor-
tant lesson: the eager technique, while largely auto-
matic, can require some manual tuning to be practical.
Because our technique is targeted toward game devel-
opers, we believe that allowing for such manual tuning
is appropriate.

Frame processing In XPilot, messages from the
server to the client describing the current game state
are called frames. Each frame is formed of a chain of
game packets (not to be confused with network pack-
ets). The first and last packets in a frame are al-
ways special start-of-frame and end-of-frame packets,
called PKT START and PKT END. Figure 4 shows an XPi-
lot frame, containing a packet of type PKT FUEL and
potentially others (indicated by “. . .”). Packet head-
ers are a single byte, followed by packet data that
can carry anything from a single byte to an arbitrary-
length, NULL-terminated string, depending on the
packet type. Frames may contain multiple packet types
and multiple instances of the same packet type.

PKT START header
PKT START data

...

PKT FUEL header
PKT FUEL data

...

. . .

PKT END header
PKT END data

...

Figure 4. XPilot frame layout

Consider the client’s frame-processing algorithm.
Given a frame, it reads the packet header (i.e., the first
byte), then calls the handler for that packet, which
processes the packet and advances the frame pointer
so that the new “first byte” is the packet header of
the next packet in the frame. This continues until
the packet handler for PKT END is called, the return of
which signifies the end of the frame handling. There-
fore, given a completely symbolic buffer representing
the frame, our symbolic execution would need to walk
the client code for each possible sequence of packets in
a frame, up to the maximum frame size. But XPilot
has dozens of packet types, some of which include a

very small amount data. As evidence of the infeasibil-
ity of such an approach, consider the following (very
conservative) lower bound on the number of packet se-
quences: There are at least 10 types of packets that
we considered whose total size is at most 5 bytes. The
maximum size for a server-to-client frame in XPilot is
4,096 bytes, which means there is room for over 800 of
these packets. That gives at least 10800 possible packet
sequences that symbolic execution would traverse to
generate constraints, which is obviously infeasible.

To make eager constraint generation feasible, then,
we adapt our approach to generate round constraints
by starting and stopping symbolic execution at mul-
tiple points within the loop, as opposed to just the
beginning and end of the loop. In particular, we
apply symbolic execution to the frame processing
and user input processing portions of the loop sep-
arately, to obtain user-input constraints and frame-
processing constraints, which in turn the verifier pieces
together during verification to construct the round
constraints. Moreover, the verifier can construct the
frame-processing constraints on the basis of the par-
ticular frame the server sent to the client. It does
so dynamically from packet-processing constraints that
characterize how the client should process each packet
in the particular frame. For example, if the only
packet types were PKT START, PKT FUEL, PKT TIME LEFT,
and PKT END, the packet-processing constraints repre-
senting the processing of a single packet would be

(p = PKT START) ∧ (constraints for(PKT START))
(p = PKT FUEL) ∧ (constraints for(PKT FUEL))
(p = PKT TIME LEFT) ∧ (constraints for(PKT TIME LEFT))
(p = PKT END) ∧ (constraints for(PKT END))

where p is a variable for the packet type and
constraints for(PKT START) represents the additional
constraints that would result from symbolic execu-
tion of the packet handler for PKT START. With this
new model of packet processing, the verifier can build
a frame-processing constraint to represent any given
frame from the logs. In this way, when the veri-
fier checks the behavior of a given client, it does so
armed with the frames the server sent to the client,
the messages the server received from the client, and
the frame-processing constraints that characterize the
client’s processing of each frame, which the verifier con-
structs from the packet-processing constraints.

Packet processing Certain individual packet types
present their own tractability challenges as well. For
example, the payload for a certain packet begins with
a 32-bit mask followed by one byte for each bit in the
mask that is equal to 1. The client then stores these
remaining bytes in a 32-byte array at the offsets de-

termined by the mask (setting any bytes not included
in the message to 0). In the packet handler, the XPi-
lot client code must sample the value of each bit in
the mask in turn. Since the payload (and thus the
mask) is symbolic, each of these conditionals results in
a fork of two separate paths (for the two possible val-
ues of the bit in question). Our symbolic execution of
this packet handler, then, would produce over 4 billion
round constraints, which is again infeasible. We could
have changed the XPilot network protocol to avoid the
using mask, sending 32 bytes each time, but doing so
would increase network bandwidth needlessly. Instead,
we note that the result of this packet handler is that
the destination array is set according to the mask and
the rules of the protocol. We thus added a simple rule
to the verifier that, when processing a packet of this
type, generates a constraint defining the value of the
destination array directly, exactly as the packet han-
dler would have. Then, when symbolically executing
the packet handlers, prior to verification, we can sim-
ply skip this packet.

To avoid similar modifications to the extent possi-
ble, we pruned the packets the verifier considers dur-
ing verification to only those that are necessary. That
is, there are several packet types that will not alter
the permissible behaviors of the client as could be wit-
nessed by the server, and so we ignored them when
applying our technique. Most of these packet types
represent purely graphical information. For example,
a packet of type PKT ITEM simply reports to the client
that a game item of a given type (e.g., a power-up or
a new weapon) is floating nearby at the given coordi-
nates. These instructions allow the client to draw the
item on the screen, but they do not affect the valid
client behaviors as observable by the verifier.1

User input The first part of the client input loop
checks for and handles input from the player. Gath-
ering user-input constraints is fairly straightforward,
with the exception that XPilot allows players to do
an extensive amount of keyboard mapping, including
configurations in which multiple keys are bound to the
same function, for example. We simplified the gen-
eration of constraints by focusing on the user actions
themselves rather than the physical key presses that
caused them. That is, while generating constraints
within the user-input portion of XPilot, we begin sym-
bolic execution after the client code looks up the in-

1In particular, whether the client processes this packet is ir-
relevant to determining whether the client can pick up the game
item described in the packet. Whether the client obtains the
item is unilaterally determined by the server based on it com-
puting the client’s location using the low-level client events it
receives — an example of how nearly all control is stripped from
clients in today’s games, owing to how they cannot be trusted.

game action bound to the specific physical key pressed,
but before the client code processes that action. For
example, if a user has bound the action KEY FIRE SHOT

to the key ‘a’, our analysis would focus on the effects
of the action KEY FIRE SHOT, ignoring the actual key to
which it is bound. However, as with other client con-
figuration options, the keyboard mapping could easily
be sent to the server as a requirement of joining the
game, invoking a small, one-time bandwidth cost that
would allow the verifier to check the physical key con-
figuration.

5.4.2 Eager Verification Performance

We ran our eager client verifier on the same 2,000-
round XPilot game log and on the same computer as
the test in §5.3. Figure 5 describes the per-round vali-
dation cost (in seconds) using a box-and-whiskers plot.
As in Figure 3(b), we employed here an XPilot-specific
optimization by observing that the number of client
messages in a round bounds the number of user in-
puts in that round. As such, in piecing together round
constraints, the verifier includes a number of copies of
user-input constraints (see §5.4.1) equal to the client
sends in that round. Figure 5 exhibits three bands (the
third comprising a few large values), corresponding to
different numbers of copies. The large percentage of
rounds contained no user inputs and were the quick-
est to process, with a mean cost of 1.64s and a stan-
dard deviation of 0.232s. A second band of rounds —
those with a single user input — took longer to process,
with a mean of 11.3s and a standard deviation of 1.68s.
Remaining rounds contained multiple user inputs and
took the longest to process (34.2s, on average), but
they were by far the least frequent.

Comparing Figures 5 and 3(b), the times for the ea-
ger approach are substantially slower than those for the
lazy approach, when applied to XPilot. This perfor-
mance loss is due to the fact that a large portion of the
XPilot client code is dedicated to handling server mes-
sages. And while the verifier in the eager case has pre-
processed this portion of the code, the resulting round
constraints are much more complex than in the lazy ap-
proach, where the the verifier knows the exact values of
the server messages when generating round constraints.
This complexity results in constraint solving in the ea-
ger case (line 305 of Figure 2) being more expensive.

It is also important to recall that lazy and eager are
not interchangeable, at least in terms of game developer
effort. As discussed in §5.4.1, achieving feasible genera-
tion of eager round constraints required substantial ad-
ditional manual tuning, and consequently greater op-
portunity for programmer error. As such, it appears

0 500 1000 1500 2000

1
2

5
10

20
50

Round

V
er

ifi
ca

tio
n

C
os

t (
se

co
nd

s)

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

1
2

5
10

20
50

Figure 5. Verification cost per round using
eager round constraints and XPilot-specific
optimizations, while checking a 2,000-round
XPilot game log

that eager is an inferior approach to lazy for XPilot.
Another comparison between lazy and eager, with dif-
fering results, will be given in §6.

6 Case Study: Cap-Man

Our client verification technique challenges the cur-
rent game-design philosophy by allowing servers to re-
linquish authoritative state to clients while retaining
the ability to validate client behavior and thus detect
cheating. As a way of demonstrating this notion, we
have written a game called Cap-Man that is based on
the game Pac-Man. In some ways Cap-Man is easier to
validate than XPilot was — it represents a considerably
smaller code base (approximately 1,000 lines of C code)
and state size. However, whereas XPilot was written
with virtually no authoritative client state, we will see
that Cap-Man is intentionally rife with it, providing a
more interesting challenge for our technique because it
is so much more vulnerable to invalid messages. The
size of its code base also allows us to conduct a more
direct comparison between lazy and eager verification.

6.1 The Game

Cap-Man is a Pac-Man-like game in which a player
controls an avatar that is allowed to move through a
discrete, two-dimensional map with the aim of consum-
ing all remaining “food” items before being caught by
the various enemies (who are also wandering the map).
Each map location is either an impenetrable wall or an

open space, and the open spaces can contain an avatar,
an enemy, pieces of food, a power-up, or nothing at
all. When a player reaches a map location that con-
tains food or a power-up, he automatically consumes it.
Upon consuming a power-up, the player enters a tem-
porary “power-up mode,” during which his pursuers
reverse course — trying to escape rather than pursue
him — and he is able to consume (and temporarily dis-
place) them if he can catch them. In addition to these
features (which were present in Pac-Man as well), we
have added a new feature to Cap-Man to invite further
abuse and create more uncertainty at the server: A
player may set a bomb (at his current location), which
will then detonate 5 rounds in the future, killing any
enemies (or the player himself) within a certain radius
on the map. Players are not allowed to set a second
bomb until the first bomb has detonated.

Cap-Man uses a client-server architecture, which
we designed specifically to go against current game-
development best practices: i.e., it is the server, not
the client, which has a minimum of authoritative state.
The client tracks his own map position, power-up-mode
time remaining, and bomb-placement details. Specifi-
cally, at every round, the client sends a message to the
server indicating its current map position and remain-
ing time in power-up mode. It also sends the position of
a bomb explosion, if there was one during that round.
Note that the client never informs the server when it
decides to set a bomb. It merely announces when and
where detonation has occurred. The server, in contrast,
sends the client the updated positions of his enemies —
this being the only game state for which the server has
the authoritative copy.

The design of Cap-Man leaves it intentionally vul-
nerable to a host of invalid-message attacks. For exam-
ple, although valid game clients allow only contiguous
paths through the map, a cheating player can arbi-
trarily adjust his coordinates, ignoring the rules of the
game — a cheat known in game-security parlance as
“telehacking.” He might also put himself into power-
up mode at will, without bothering to actually con-
sume a power-up. Finally, there is no check at the
server to see whether or not a player is lying about a
bomb placement by, for example, announcing an explo-
sion at coordinates that he had not actually occupied
5 rounds earlier. In fact, the Cap-Man server contains
no information about (or manual checks regarding) the
internal logic of the game client.

In order to detect cheating in Cap-Man, we apply
our technique in both its lazy and eager flavors. Due
to Cap-Man’s smaller size and simpler code structure,
we can generate round constraints over an entire itera-
tion of the main loop in each case, without the need to

compartmentalize the code and adopt significant trim-
ming measures as we did for XPilot.

6.2 Evaluation

Using our technique, we are able to detect invalid-
command cheats of all the types listed above. Below
we present the results of client-validity checks on a
game log consisting of 2,000 rounds (about 6-7 min-
utes of game-play time), during which the player moved
around the map randomly, performing (legal) bomb
placements at random intervals.

Figure 6 shows that the verification costs for Cap-
Man were consistently small, with a mean and stan-
dard deviation of 814ms and 1.10s for verification via
lazy round constraints (Figure 6(a)) and a mean and
standard deviation of 260ms and 45.0ms for verifica-
tion using eager round constraints (Figure 6(b)). The
lazy method was (on average) roughly 2.5 times slower
than the eager method, owing to the overhead of sym-
bolic execution to compute round constraints for each
round individually during verification. While in the
XPilot case study, eager verification required signifi-
cantly greater development effort (see §5.4.1), this ad-
ditional effort was unnecessary with Cap-Man due to
its relative simplicity.

Figure 6(c) shows the number of satisfiable accu-
mulated constraints, which did not trend upward dur-
ing the run. Note that these values were identical for
both the eager and lazy approaches, as expected. In
the case of XPilot, the number of satisfiable accumu-
lated constraints was always 1, but in Cap-Man there
were often multiple accumulated constraints that re-
mained satisfiable at any given round. This increase
resulted primarily from state the Cap-Man client main-
tains but does not immediately report to the server
(e.g., whether a bomb has been set). The relationship
between this hidden state and the number of satisfiable
accumulated constraints is an important one. Consider
the verification of a Cap-Man game that is currently
in round i, with no bomb placements in the last 5
rounds (unbeknownst to the verifier). The verifier must
maintain accumulated constraints that reflect possible
bomb placements at each of rounds i − 4 through i.
Upon encountering msg i+1 with an announcement of
a bomb explosion, the verifier can discard not only all
current accumulated constraints which do not include
a bomb placement at round i − 4 but also those accu-
mulated constraints which do include bomb placements
in rounds i− 3 through i + 1, because players can only
have one pending bomb at a time. This rule was not
manually configured into the verifier— it was inferred
automatically from the client code itself.

0 500 1000 1500 2000

0
1

2
3

4
5

Round

V
er

ifi
ca

tio
n

C
os

t (
se

co
nd

s)

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

(a) Cost per round (lazy)

0 500 1000 1500 2000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Round
V

er
ifi

ca
tio

n
C

os
t (

se
co

nd
s)

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(b) Cost per round (eager)

0 500 1000 1500 2000

0
5

10
15

20
25

30
35

Round

S

at
is

fia
bl

e
A

cc
um

ul
at

ed
 C

on
st

ra
in

ts

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

(c) Satisfiable accumulated con-
straints per round

Figure 6. Verifying a 2,000-round Cap-Man game log

7 Conclusion

The need to detect cheats in online games has heav-
ily influenced game design for well more than a decade.
Cheating has driven game developers to minimize or
eliminate the management of authoritative state at
game clients. These measures have direct impact on the
game operator’s bottom line, in particular due to the
inflated bandwidth costs that result and to the manual
and heuristic (and hence ongoing) effort of program-
ming server-side checks on client behaviors.

In this paper we have developed a new approach
to validate the server-visible behavior of game clients.
Our approach validates that game-client behavior is a
subset of the behaviors that would be witnessed from
the sanctioned game-client software, in light of both the
previous behaviors from the client and the game state
sent to that client. Our technique exploits a common
structure in game clients, namely a loop that accepts
server and user inputs, manages client state, and up-
dates the server with information necessary for multi-
player game play. Our technique applies symbolic exe-
cution to this loop to produce constraints that describe
its effects. The game operator can then check the con-
sistency of client updates with these constraints offline,
in an automated fashion. We explored both lazy and
eager approaches to constraint generation, and inves-
tigated the programmer effort each entails and their
performance in two case studies.

In our first case study, we applied our validation ap-
proach to XPilot, an existing open-source multiplayer
game. We detailed the ways we adapted our technique,
in both the lazy and eager variants, to allow for ef-

ficient constraint generation and server-side checking.
While this effort demonstrated the application of our
approach to a real game, it was less satisfying as a
test for our technique, in that XPilot was developed
in the mold of modern games — with virtually no au-
thoritative state at the client. We thus also applied
our technique to a simple game of our own design that
illustrated the strengths of our technique more clearly.

We believe that the advance in this paper can change
how game developers address an important class of
game cheats today, and in doing so opens up new av-
enues of game design that permit lower bandwidth uti-
lization and better performance. We plan to examine
the application of this technique to other types of dis-
tributed applications in future work.

Acknowledgements

We are deeply grateful to Cristian Cadar, Daniel
Dunbar, and Dawson Engler for helpful discussions and
for permitting us access to an early release of klee.
Srinivas Krishnan, Alana Libonati, Andy White and
the anonymous reviewers provided helpful comments
on drafts of this paper. This work was supported in
part by NSF awards CT-0756998 and TC-0910483.

References

[1] L. Alexander. World of warcraft hits 10 million
subscribers, Jan. 2008. http://www.gamasutra.com/

php-bin/news index.php?story=17062.
[2] N. E. Baughman and B. N. Levine. Cheat-proof play-

out for centralized and distributed online games. In
Proceedings of IEEE INFOCOM, Apr. 2001.

[3] D. Brumley, J. Newsome, D. Song, H. Wang, and
S. Jha. Towards automatic generation of vulnerability-
based signatures. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, May 2006.

[4] D. Brumley, H. Wang, S. Jha, and D. Song. Creating
vulnerability signatures using weakest pre-conditions.
In Proceedings of the 2007 Computer Security Foun-
dations Symposium, July 2007.

[5] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage tests
for complex systems programs. In Proceedings of the
8th USENIX Symposium on Operating Systems Design
and Implementation, Dec. 2008.

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: Automatically generating in-
puts of death. In Proceedings of the 13th ACM Con-
ference on Computer and Communications Security,
Nov. 2006.

[7] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L.
Lei, and W.-C. Chen. Identifying MMORPG bots: A
traffic analysis approach. In Proceedings of the 2006
ACM SIGCHI International Conference on Advances
in Computer Entertainment Technology, June 2006.

[8] K.-T. Chen, H.-K. K. Pao, and H.-C. Chang. Game
bot identification based on manifold learning. In Pro-
ceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games, pages 21–26,
Oct. 2008.

[9] S. Chong, J. Liu, A. C. Myers, X. Qi, N. Vikram,
L. Zheng, and X. Zheng. Secure web applications
via automatic partitioning. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles,
pages 31–44, Oct. 2007.

[10] E. Cronin, B. Filstrup, and S. Jamin. Cheat-proofing
dead reckoned multiplayer games. In Proceedings of
the 2nd International Conference on Application and
Development of Computer Games, Jan. 2003.

[11] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky,
U. Sammapun, I. Lee, and C. Tsarouchis. Is runtime
verification applicable to cheat detection? In Proceed-
ings of 3rd ACM SIGCOMM Workshop on Network
and System Support for Games, Aug. 2004.

[12] W. Feng, E. Kaiser, and T. Schluessler. Stealth mea-
surements for cheat detection in on-line games. In
Proceedings of the 7th ACM SIGCOMM Workshop on
Network and System Support for Games, pages 15–20,
Oct. 2008.

[13] V. Ganesh and D. L. Dill. A decision procedure for bit-
vectors and arrays. In Computer Aided Verification,
19th International Conference, CAV 2007, pages 519–
531, July 2007.

[14] J. T. Giffin, S. Jha, and B. P. Miller. Detecting ma-
nipulated remote call streams. In Proceedings of the
11th USENIX Security Symposium, Aug. 2002.

[15] J. Goodman and C. Verbrugge. A peer auditing
scheme for cheat elimination in MMOGs. In Proceed-
ings of the 7th ACM SIGCOMM Workshop on Net-
work and System Support for Games, pages 9–14, Oct.
2008.

[16] A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for Ajax intrusion detection. In Proceedings of
the 18th International World Wide Web Conference,
pages 561–570, Apr. 2009.

[17] S. Hawkins, consultant for Sega of America.
Quoted [29, p. 182].

[18] G. Hoglund and G. McGraw. Exploiting Online
Games: Cheating Massively Distributed Systems.
Addison-Wesley Professional, 2007.

[19] D. A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the Insti-
tute of Radio Engineers, 40(9):1098–1101, Sept. 1952.

[20] T. Izaiku, S. Yamamoto, Y. Murata, N. Shibata,
K. Yasumoto, and M. Ito. Cheat detection for
MMORPG on P2P environments. In Proceedings of
5th ACM SIGCOMM Workshop on Network and Sys-
tem Support for Games, Oct. 2006.

[21] S. Jha, S. Katzenbeisser, C. Schallhart, H. Veith, and
S. Chenney. Enforcing semantic integrity on untrusted
clients in networked virtual environments (extended
abstract). In Proceedings of the 2007 IEEE Symposium
on Security and Privacy, pages 179–186, May 2007.

[22] P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buch-
mann. Addressing cheating in distributed MMOGs.
In Proceedings of 4th ACM SIGCOMM Workshop on
Network and System Support for Games, Oct. 2005.

[23] E. Kaiser, W. Feng, and T. Schluessler. Fides: Remote
anomaly-based cheat detection using client emulation.
In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, Nov. 2009.

[24] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Automating mimicry attacks using static
binary analysis. In Proceedings of the 14th USENIX
Security Symposium, pages 161–176, July 2005.

[25] Y. Lyhyaoui, A. Lyhyaoui, and S. Natkin. Online
games: Categorization of attacks. In Proceedings of
the 2005 International Conference on Computer as a
Tool (EUROCON), Nov. 2005.

[26] M. Magiera. Videogames sales bigger than DVD-
Blu-ray for first time, Jan. 2009. http://www.

videobusiness.com/article/CA6631456.html.

[27] S. Mitterhofer, C. Platzer, C. Kruegel, and E. Kirda.
Server-side bot detection in massive multiplayer online
games. IEEE Security and Privacy, 7:18–25, 3 2009.

[28] C. Mönch, G. Grimen, and R. Midtstraum. Protecting
online games against cheating. In Proceedings of 5th
ACM SIGCOMM Workshop on Network and System
Support for Games, Oct. 2006.

[29] J. Mulligan and B. Patrovsky. Developing Online
Games: An Insider’s Guide. New Riders Publishing,
2003.

[30] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems, 10(1):26–
52, 1992.

[31] T. Schluessler, S. Goglin, and E. Johnson. Is a bot
at the controls? Detecting input data attacks. In
Proceedings of the 6th ACM SIGCOMM Workshop on

Network and System Support for Games, pages 1–6,
Sept. 2007.

[32] D. Schubert, former lead designer for Meridian 59.
Quoted [29, p. 221].

[33] D. Spohn. Cheating in online games.
http://internetgames.about.com/od/gamingnews/

a/cheating.htm.
[34] G. Staff. Analyst: Online games now $11b

of $44b worldwide game market, June 2009.
http://www.gamasutra.com/php-bin/news index.

php?story=23954.
[35] K. Vikram, A. Prateek, and B. Livshits. Ripley: Auto-

matically securing Web 2.0 applications through repli-
cated execution. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security,
Nov. 2009.

[36] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter,
and Z. Dong. Privacy-preserving genomic computa-
tion through program specialization. In Proceedings
of the 16th ACM Conference on Computer and Com-
munications Security, Nov. 2009.

[37] M. Ward. Warcraft game maker in spying row, Oct.
2005. http://news.bbc.co.uk/2/hi/technology/

4385050.stm.
[38] S. Webb and S. Soh. A survey on network game cheats

and P2P solutions. Australian Journal of Intelligent
Information Processing Systems, 9(4):34–43, 2008.

[39] R. V. Yampolskly and V. Govindaraju. Embedded
noninteractive continuous bot detection. Computers
in Entertainment, 5(4):1–11, Oct. 2007.

[40] J. Yan and B. Randell. A systematic classification of
cheating in online games. In Proceedings of 4th ACM
SIGCOMM Workshop on Network and System Sup-
port for Games, Oct. 2005.

[41] J. Yang, C. Sar, P. Twohey, C. Cadar, and D. En-
gler. Automatically generating malicious disks using
symbolic execution. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy, May 2006.

A An XPilot Acknowledgement Scheme

As discussed in §5.2, an efficient acknowledgement
scheme allows the server (and hence verifier) knowledge
of the order (and loop iterations) in which the client
processed server messages and sent its own messages.
Below we describe one such scheme that is optimized
for messages that arrive at the client mostly in order.

In this scheme, the XPilot client includes a sequence
number c2sNbr on each message it sends to the server,
and similarly the server includes a sequence number
s2cNbr on each message it sends to the client. Each
message from the server to a client also includes the
largest value of c2sNbr received from that client. In
each client message, the client includes c2sAckd , the
largest value of c2sNbr received in a server message so
far; a sequence lateMsgs [] of server message sequence

numbers; and a sequence eventSeq[] of symbols that
encode events in the order they happened at the client.
The symbols in eventSeq[] can be any of the following.
Below, s2cAckd is the largest sequence number s2cNbr
received by the client before sending message c2sAckd ,
and similarly loopAckd is the largest client loop itera-
tion completed at the client prior to it sending c2sAckd .

• Loop denotes a completed loop iteration. The j-th
occurrence of Loop in eventSeq[] denotes the com-
pletion of loop iteration loopAckd + j.

• Send denotes the sending of a message to the server.
The j-th occurrence of Send in eventSeq[] denotes
the sending of client message c2sAckd + j.

• Recv and Skip denote receiving or skipping the next
server message in sequence. The j-th occurrence
of Recv or Skip in eventSeq[] denotes receiving or
skipping, respectively, server message s2cAckd + j.
Here, a message a skipped if it has not arrived by
the time a server message with a larger sequence
number arrives, and so a series of one or more Skip

symbols is followed only by Recv in eventSeq[].
• Late denotes the late arrival of a message, i.e., the

arrival of a message that was previously skipped.
The j-th occurrence of Late in eventSeq[] denotes
the arrival of server message lateMsgs [j].

As such, lateMsgs [] contains a sequence number for
each server message that arrives after another with a
larger sequence number, and so lateMsgs [] should be
small. eventSeq[] may contain more elements, but the
symbols can be encoded efficiently, e.g., using Huffman
coding [19] or another coding scheme, and in at most
three bits per symbol in the worst case. Note that the
server can determine s2cAckd and loopAckd based on
the previous messages received from the client.

