
Second-Order Illumination in Real-Time (Student Paper)

Robert Cochran
Department of Computer Science

Clemson University
Clemson, SC 29634

rcochra@cs.clemson.edu

Jay Steele
Department of Computer Science

Clemson University
Clemson, SC 29634

jesteel@cs.clemson.edu

ABSTRACT
This paper presents a simple and efficient algorithm for achiev-
ing real-time performance on current consumer graphics hardware
when rendering complex, dynamic scenes with direct and second-
order diffuse (indirect) illumination. An image space, low-discrepancy
sampling technique for positioning point lights is presented. These
point lights simulate second-order diffuse illumination throughout
the scene. A novel use of negative point lights allows fast approx-
imation of occlusion of second-order diffuse illumination in image
space. Finally, an optimization technique is provided that improves
frame rates while maintaining image quality by approximating the
illumination of all point lights at lower resolutions for less detailed
areas of the scene.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism—Color, shading, shadowing, and texture

General Terms
Algorithms, Performance

Keywords
global illumination, GPU processing, hardware acceleration, real-
time rendering

1. INTRODUCTION
Approximating global illumination is key in adding realism to

computer generated images. The two main components of global
illumination are direct illumination, which arrives directly from
light sources, and indirect illumination, which results from light re-
flecting off surfaces in the scene. Indirect illumination contributes
greatly to the realism of images (figure 1); however, computing in-
direct illumination is very expensive. Non-real-time global illumi-
nation algorithms generate very realistic results, but the rendering
time for each frame often takes minutes or hours. Real-time appli-
cations, which require frames to be rendered in a few milliseconds,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE 2007, March 23-24, 2007, Winston-Salem, N. Carolina, USA
Copyright 2007 ACM 978-1-59593-629-5/07/0003 ...$5.00.

can easily compute direct illumination, but these applications have
historically relied on precomputed light maps or other static tech-
niques for approximating indirect illumination.

In this paper we present an algorithm for rendering complex,
dynamic scenes in real-time with direct and indirect illumination.
Specifically, we approximate second-order diffuse reflections (in-
direct illumination) as well as occlusion of these reflections. Our
work is an extension of Keller’s Instant Radiosity [8]. Our algo-
rithm does not rely on precomputations and supports fully dynamic
scenes, that is, both viewer and scene objects may be in motion. All
light properties (position, shape, color) can change per frame. Our
algorithm works in image space; therefore, the processing time per
frame is largely independent of scene complexity. To approximate
indirect illumination, our algorithm adds point lights to the scene
at each frame, which we refer to as indirect lights. We describe a
method for determining the indirect light properties, which is key to
generating quality images, using a low-discrepancy sampling tech-
nique. Calculating shadows (occlusion) due to each indirect light is
too expensive; therefore, we describe a technique for approximat-
ing occlusion of second-order diffuse reflections using additional
point lights, called negative indirect lights, that subtract light from
the scene. In order to achieve real-time performance with many
point lights while maintaining image quality, we optimize our algo-
rithm by using a low resolution approximation for the less detailed
areas of the scene. We maintain a real-time (at least 24 fps) frame
rate when rendering complex scenes.

In the next section, we provide an overview of global illumina-
tion and previous techniques, both real-time and non-real-time. In
Section 3 we discuss the details of our algorithm. Section 4 pro-
vides implementation details, and section 5 contains results. Fi-
nally, we discuss current issues and future work.

2. PREVIOUS WORK
Radiance is the fundamental quantity of interest in global illu-

mination algorithms. Human eyes and other sensors are sensitive
to the amount of radiance incident on them [5]. Radiance is a
measure of light intensity per unit surface area perpendicular to
the flux (Watts/(sr · m2)). Flux, which is expressed in Watts
(Joule/sec), is a measure of energy flowing per unit time. The
rendering equation

L(x, ~w) =

Z

S

β(x, ~wi, ~w)L(xo, ~wo)
cos θi cos θo

|x − xo|2
V (x, xo)dA

describes how light flows in a vacuum. Specifically, it provides the
exiting radiance,L(x, ~w), at pointx in direction ~w. (See figure
2.) Let ~wi = − ~wo and letx andxo denote base points of~w and
~wo respectively. Visibility is defined byV (x, xo), which is 1 ifxo

is visible fromx and 0 otherwise. The bi-directional reflectance

13

(a) (b)

Figure 1: Our test scene, the Stanford Bunny floating in a box lit by aspotlight, demonstrates direct and indirect illumination due to
second-order diffuse reflections. (a) The scene lit with only directillumination. (b) The scene lit with direct and indirect illumination.

xo

x

θi

~w

no

n

~wo

θo

Figure 2: Components of the rendering equation.

distribution function (BRDF),β(x, ~wi, ~w), is the ratio of reflected
radiance atx in direction ~w to the incident irradiance atx from di-
rection ~wo, where irradiance is the incident energy per unit surface
area (Watts/m2). Put simply, the BRDF describes atx how much
light from direction ~wo is reflected in direction~w. Summing over
all surfaces from which irradiance arises gives usL(x, ~w).

Many non-real-time rendering techniques exist for approximat-
ing the rendering equation and, therefore, global illumination. These
techniques range from radiosity [6], which is concerned with higher-
order diffuse reflections, to ray tracing, which is largely concerned
with specular reflections, to photon mapping [7], which handles
both higher order specular and diffuse reflections. Non-real-time
techniques can produce very realistic results; but, because of the
complexity of global illumination and the high quality results, each
rendered frame often takes minutes or even hours to compute.

Real-time rendering techniques make use of graphics cards. For-
tunately, the processing units on graphics cards, known as GPUs,
have consistently defied Moore’s Law by doubling performance ev-
ery six months. As GPU power increases, more and more algo-
rithms become available for approximating global illumination in
real-time. Real-time methods attempt to find a balance between
frame rate and image quality, and many of these methods intro-
duce restrictions, such as static lights or static objects. The classi-
cal approach involves precomputing light maps for static lights and
then texturing static objects with these light maps. Obviously, this

greatly restricts the interactivity of the application. Newer tech-
niques, such as Coombe, et al. [2], perform calculations at run-
time that mimic non-real-time techniques. These techniques usu-
ally compute part of the final solution per frame and slowly con-
verge to the final solution. The image quality improves as the ap-
plication runs, but it will be incorrect if the scene changes.

Keller [8] introduced the idea of simulating indirect illumina-
tion with consumer graphics hardware by placing new point lights
throughout the scene, which we call indirect lights. Each indirect
light approximates light reflecting off a surface. Higher-order dif-
fuse and specular reflections can be approximated using this tech-
nique. The locations of these indirect lights are determined by
shooting particles from the light into the scene. New indirect lights
are positioned at the intersection of each particle and scene. The
scene is rendered (with shadows) with each of the indirect lights;
the resulting images are accumulated to produce a final image that
contains both direct illumination and indirect illumination.

Recently, new derivatives of Keller’s work have introduced al-
gorithms that achieve real-time frame rates for dynamic scenes.
Sergovia, et al. [9], introduced a novel technique that reduces the
workload of each indirect light while maintaining reasonable im-
age quality. This is accomplished by restricting the effect of each
indirect light to a subset of visible surface points; a Gaussian blur
is then applied to distribute the indirect illumination of a surface
point to neighboring surface points. While not the basis of their
algorithm, they rely on the precomputation of a kd-tree for deter-
mining indirect light properties. Dachsbacher and Stamminger [3]
introduced the idea of sampling from the light’s image space; thus,
they avoid any precomputation necessary for intersection calcula-
tion. This was extended by the same authors in [4] to allow fast
indirect illumination, including caustics, through splatting indirect
lights. Splatting is a technique in which lighting calculations for
an indirect light are restricted to the pixels that are directly affected
by the light. Splatting works best when each indirect light affects
a small portion of image space; as the size of each indirect light’s
influence increases in image space, the size of the splat increases
and performance degrades. None of the previous techniques dy-
namically account for occlusion of indirect lighting. This can lead
to unrealistic results since a surface may be illuminated by indirect
lights that are not visible from the surface. Lastly, Bunnell [1] intro-

14

duced a technique that allows for computing diffuse reflections and
occlusions of diffuse reflections in real-time. This method requires
converting polygonal data to surface elements, which are oriented
disks, and works best with highly detailed models.

The algorithm we present differs from previous approaches in
three main ways: we provide a new image space, low-discrepancy
sampling technique for positioning indirect lights; we allow an ap-
proximation of occlusion of second-order diffuse reflections through
a novel use of negative point lights in image space; we provide a
new technique that reduces the average work per pixel while main-
taining image quality.

3. ALGORITHM
We approximate indirect illumination by positioning point lights,

which we call indirect lights and negative indirect lights, through-
out the scene. We are only concerned with second-order diffuse
reflections and occlusion of these reflections since these tend to
contribute the most to the final image quality [10]. The quality
and the frame rate of an interactive scene is heavily dependent on
the number of point lights created for each frame. Our algorithm
achieves real-time frame rates for complex scenes with many point
lights per frame. In discussing our algorithm, we will assume one
spotlight exists in the scene, but extending our algorithm to multi-
ple spotlights is straightforward.

3.1 Positioning Indirect Lights
Our algorithm automatically positions indirect lights, which are

point lights that approximate second-order diffuse reflections, into
the scene for each frame. Determining our indirect light positions
is key in generating a realistic image. Indirect lights should only
be positioned on surfaces that are directly lit by the main spot-
light. Flickering, which occurs when indirect lights are drastically
altered from frame to frame, in a truly dynamic scene is hard to
avoid; however, our algorithm ameliorates the affects of flickering
due to temporal changes and camera changes. Previous approaches
have positioned indirect lights by casting rays from the main light
into the scene. The intersection of each ray and scene designates
a new indirect light position. For real-time applications, prepro-
cessing steps, such as kd-trees, have been used [9] to achieve fast
ray/scene intersection calculations. But, these preprocessing steps
can severely limit scene interactivity, and ray casting requires spe-
cific ray/geometry intersection routines.

Instead of explicitly checking for ray/scene intersections, we sim-
plify this necessary step by rendering the unlit scene from the spot-
light’s point of view. Each pixel in the 2D image corresponds to a
surface point in the scene that is an ideal candidate for a indirect
light position. Not only do we need the color (indirect light color)
of each surface point, we also need each point’s world space po-
sition (indirect light position) and normal (indirect light direction).
Thus, we do not render directly into the framebuffer. Similar to
[3, 4], we render each value into a separate texture using a GPU
fragment program. Combined, these three textures describe a set
of surface points,Slight. Each point inSlight is visible from the
view of the spotlight and represents a potential indirect light; also,
all possible indirect light positions are contained inSlight. This
technique integrates well with shadow maps, which require storing
depth information for the scene while rendered from the spotlight’s
point of view. Figure 3 shows the sample points from the spotlight’s
point of view.

We now perform a low discrepancy sampling fromSlight to de-
termine the properties (position, direction, and diffuse color) of
our N indirect lights. Similar to [8], our samples are based on
the Halton sequence. The Halton sequence provides a uniformly

(a) (b)

Figure 3: (a) The view from the spotlight, with the indirect light
sample points displayed in yellow. (b) The view from the cam-
era, with the indirect light positions highlighted with white cir-
cles.

distributed, quasi-random, low discrepancy sampling pattern. The
quasi-random aspect allows our algorithm to minimize flickering
due to temporal changes or camera changes. Indirect light positions
only vary frame to frame due to transformations of scene objects or
changes of the spotlight. First, we generate sample points,si, in
ℜ3 uniformly on the unit sphere surrounding the scene’s spotlight
using

ϕ = 2πΦ2(i)

δ = arcsin(2Φ3(i) − 1)

si = (sin(ϕ) cos(δ), cos(ϕ) cos(δ), sin(δ))

whereΦj(i) is the i-th number in the Halton sequence based on
the j-th prime number. (Writei in basej, i =

P

∞

k=0
akjk, then

Φj(i) =
P

∞

k=0
akj−k−1.) We select the firstN sample points that

fall into intersection of the cone of the spotlight and the unit sphere
surrounding the spotlight, rejecting all others. Accepted sample
points are projected into the image space of the spotlight. TheN
projected sample points, which are inℜ2, allow us to selectN
surface points fromSlight. Each surface point defines the posi-
tion, direction, and color for one of ourN indirect lights. Figure
3 shows the projected sample points overlapped on an image ren-
dered from the spotlight’s point of view and the resulting indirect
light positions from the camera’s point of view.

3.2 Computing Indirect Illumination
Computing illumination due to allN indirect lights requires treat-

ing each indirect light as a point light. We make the simplifying
assumption that indirect lights are visible from each surface point;
that is, we do not calculate shadows directly for indirect lights. Ac-
curate shadows from each indirect light are far too expensive to
compute. In Section 3.3, we introduce a technique for approximat-
ing shadows for indirect lights.

We exploit a deferred shading pass to avoid repetitive calcula-
tions due to multiple passes and to avoid expensive calculations for
hidden fragments. Similar to rendering from the view of the light,
we render the scene from the camera’s point of view without light-
ing into multiple textures; for each pixel, we store its world space
position, normal, and material information. These textures define
a set of surface points,Scam. Each surface point corresponds to a
pixel in the final rendered frame, andScam only contains surface
points that are visible from the camera (i.e. those that contribute to
the final image). We can now perform our expensive lighting cal-
culations only on points inScam and avoid performing any lighting
calculations on hidden surfaces. Combining deferred shading and

15

our image space light positioning technique allows our algorithm
to be largely independent of scene complexity. The actual scene is
only rendered twice: once from the point of view of the spotlight
and once from the camera’s point of view. The indirect illumination
calculations, of which there may beN per pixel, now dominate our
per frame processing time.

3.3 Adding a Visibility Approximation
Recall that the rendering equation (Section 2) makes use of a vis-

ibility function V (l, p), which, given the position of a light source
l and a pointp determines whetherl is visible fromp. The use of
visibility function improves image quality by accurately portraying
the shadows cast by all lights in a scene. However, the construction
of a visibility function V , using a method such as shadow map-
ping, forN indirect lights is prohibitively expensive; therefore, to
compute indirect illumination in real-time we avoid the explicit de-
termination of whether a lightl is visible from a pointp.

We categorize the calculation of indirect illumination by whether
or not a visibility function is used. We definesimple indirect il-
lumination as indirect illumination calculated without a visibility
function, i.e.,V (l, p) is always defined as 1. We denote the simple
indirect illumination at a pointp as Is(p). Put simply, the indi-
rect lights do not cast shadows. So far, our algorithm calculates
simple indirect illumination. A more accurate model iscomplex
indirect illumination, which is calculated with a visibility function
V (l, p) = {0, 1}; in other words, the indirect lights do cast shad-
ows. We denote the complex indirect illumination at a pointp as
Ic(p). Note thatIs(p) is always at leastIc(p), since the assumption
that the indirect lights do not cast shadows introduces additional
illumination. We define this additional illumination asnegative in-
direct illumination which we denote at a pointp asIn(p). Given
In(p), we haveIs(p) − In(p) = Ic(p). As we have described
how to approximateIs(p), the key insight of our algorithm is an
efficient method of approximatingIn(p). This in turn provides an
efficient approximation ofIc(p).

We approximate negative indirect illumination using additional
point lights which we call negative indirect lights. The properties
of the negative indirect lights are determined using the same gen-
eral scheme described in Section 3.1, where we render the proper-
ties of the surface points visible from the spotlight’s point of view
into multiple textures, and then sample from these textures to de-
termine the indirect lights’ properties. To determine the properties
of the negative indirect lights, we sample from the surface points
visible from the camera’s point of view. For each of these points,
we compute the “negative” illumination from the (already selected,
“positive”) indirect lights. At a pointp, given the surface normal,
~np and the vector,~tl,p, from p to an indirect lightl, the “negative”
illumination is simply the illumination atp from l computed with
~np · ~tp,l negated. Note that this dot product implies the surface at
p is directedaway from l, and would not be illuminated byl in the
standard lighting model. Also at each pointp, we weight the direc-
tion vector of each lightl with a weight functionwp(l) and compute
a weighted average over the direction vectors of all indirect lights.
wp(l) is equal to the intensity of the indirect illumination arriving
at p from l. This average then corresponds to the direction of a
negative indirect light if such a light were to be placed atp. The
“negative” illumination and direction at each pointp can be stored
in multiple textures by a fragment shader. These textures form a
set of surface pointsSneg. We then determine the properties (posi-
tion, direction, and diffuse color) of the negative indirect lights via
a Halton sampling of the points inSneg. After the negative indi-
rect light properties have been determined, we compute a negative
indirect illumination texture using the techniques in section 3.2.

(a) (b)

Figure 4: (a) A low resolution second-order diffuse approxima-
tion is computed for all pixels. (b) A high resolution second-
order diffuse approximation is computed for all pixels that the
low-resolution approximation is not suitable.

3.4 Final Gather
Our final step requires accumulating the contributions of the spot-

light, indirect lights, and negative indirect lights into one image.
We render the scene from the camera’s point of view, and a frag-
ment program calculates the direct lighting and shadows (using
shadow mapping) for each pixel. Also, for each pixel, we add the
value of the corresponding texel in our indirect illumination and
subtract the value of the corresponding texel in our negative indi-
rect illumination texture. Figure 5 shows each step.

3.5 Optimization
Our algorithm’s performance and image quality is dependent on

the number of point lights (indirect lights and negative indirect
lights) inserted into the scene: increasing the number of point lights
improves the image quality but degrades performance. By optimiz-
ing our algorithm, we can minimize the degradation associated with
this increase while maintaining image quality.

As noted in [3], for many of the surface points inScam, a cheaper
evaluation may be sufficient for approximating indirect illumina-
tion. First, we downsample the deferred shading textures that form
Scam to form a smaller (lower resolution) set of surface points
called Slocam. This has the effect of storing the surface points
from a low resolution render from the camera’s point of view into
Slocam. Using a fragment program, we compute the second-order
diffuse illumination for each surface point inSlocam due to allN
indirect lights and store these values in a texture. This low resolu-
tion, indirect illumination texture is upsampled to full resolution to
form the basis for our final indirect illumination texture. For each
surface pointp ∈ Scam, we determine if the corresponding indi-
rect illumination value computed fromSlocam is a good approxi-
mation. This is accomplished by comparingp’s normal and world
space position with the normal and world space position ofp’s cor-
responding surface point inSlocam. If the difference is greater than
a threshold (which we call the discontinuity threshold), we calcu-
latep’s indirect illumination due to allN indirect lights and over-
write the value in our indirect illumination texture. (See figure 4.)
This same technique is used to computer our negative indirect illu-
mination texture.

The performance increase achieved through use of this optimiza-
tion technique is scene dependent. It is most effective when the
indirect illumination for a majority of the surface points in image
space can be approximated by the low resolution pass. If needed,
the discontinuity threshold can be adjusted to find a suitable bal-
ance between image quality and frame rate.

16

(a) (b)

(c) (d)

Figure 5: Illumination from (a) the spotlight, (b) the indirect
lights, and (c) the negative indirect lights. (d) The final result is
a combination of (a), (b), and (c).

4. IMPLEMENTATION
We implemented our algorithm using OpenGL and GLSL. Our

algorithm requires multiple passes, with only two passes requiring
the scene to be rendered. The first pass renders the scene from the
spotlight’s point of view. In this pass, we use a fragment program to
store each pixel’s world space position, normal, and material infor-
mation into three 16-bit float textures, each with four components.
These textures define our setSlight of surface points that are visible
from the spotlight’s point of view. Although 32-bit float textures are
available, the additional precision does not provide sufficient bene-
fit to overcome the extra memory bandwidth requirements. A depth
texture is also created in this pass and is used to generate shadows
from the main spotlight.

Next, we perform a deferred shading pass from the camera’s
point of view. Another fragment program stores world space co-
ordinates, normal, and material properties for each pixel in three
16-bit float textures, each with four components. These textures
define our setScam of surface points that are visible from the cam-
era’s point of view. Our lower resolution setSlocam is created by
downsampling the full resolution deferred shading textures. Each
surface point inSlocam corresponds to four surface points inScam.

We use a discontinuity buffer to determine the subset ofScam

for which a low resolution, indirect illumination approximation is
suitable. For surface points inScam that differ greatly from the
corresponding surface point inSlocam, a red pixel is stored in the
discontinuity buffer. Otherwise, a black pixel is written. The dis-
continuity buffer is then downsampled to a lower resolution. This
lower resolution discontinuity buffer is transferred to the CPU for
analysis. Transferring and analyzing a full resolution discontinuity
buffer adversely affects performance.

Our indirect illumination texture is computed in multiple steps.
First, for all surface points inSlocam, we store the indirect illumi-
nation due to allN indirect lights in a 16-bit float texture. This
texture is upsampled to full resolution; each texel defines the in-
direct illumination for a surface point inScam. But, this approx-
imation may not be accurate enough. For every red pixel in the
discontinuity buffer, we recompute the indirect illumination for the
corresponding surface point inScam and replace the value stored

Negative
Indirect Lights Indirect Lights Frame rate (FPS)

100 50 26.5
150 0 32.6
200 100 15.6
300 0 19.2
300 150 11.0
450 0 13.6

Table 1: Frame rates when rendering our test scene at 640 x 480
with varying numbers of indirect lights and negative indirect
lights.

Low Resolution
Percentage RMS Frame rate (FPS)

100.0% 1.5082% 42.5
87.5% 0.1688% 26.5
50% 0.0885% 15.4
0% 0% 12.6

Table 2: “Low Resolution Percentage” is the percentage of
pixels for which a low resolution approximation was sufficient
based on a discontinuity threshold. “RMS” is the root mean
square error in the resulting image when compared to an im-
age rendered without optimization.

in our indirect illumination texture. This is accomplished by draw-
ing quadrilaterals over pixels that require recalculation of indirect
illumination. Our fragment program will only run over the pixels
covered by each quadrilateral.

In the same passes that we compute our indirect illumination tex-
ture, we also compute the textures that are sampled to create our
negative indirect illumination texture. We compute our final nega-
tive indirect illumination texture using the hierarchical method de-
scribed above for computing our indirect illumination texture. Our
final pass simply combines direct illumination and shadow map-
ping with our indirect illumination and negative indirect illumina-
tion values.

5. RESULTS
Our test scene was rendered on a NVIDIA Quadro FX 5500.

All tests were run at a resolution of 640 x 480. Our sample scene
consists of a box (each wall is composed of two triangles) and the
Stanford Bunny (composed of 69,451 triangles). Table 1 illustrates
that the performance of our algorithm is highly dependent on the
number of point lights (indirect lights and negative indirect lights)
added to the scene. More point lights results in higher image qual-
ity, but lower frame rates. Note that negative indirect lights are
more expensive than indirect lights. This is due to extra overhead
(processing and memory bandwidth) required in positioning the
negative indirect lights. This cost is amortized away as the num-
ber of negative indirect lights increases.

Figure 6 demonstrates the effectiveness of our visibility approx-
imation that makes use of negative indirect lights. Note the en-
hanced detail around the bunny’s eye and ear. Our occlusion ap-
proximation improves the realism of the scene without the cost as-
sociated with more accurate shadowing methods.

Recall that our optimization technique applies a low resolution
approximation to certain pixels based on a discontinuity threshold.
As shown in table 2, the percentage of pixels for which a low reso-
lution approximation is used has a direct affect on the image quality
and frame rate. For all scenes, a balance between frame rate and

17

(a) (b)

Figure 6: Comparison of the scene with (a) no negative indirect
lights and (b) with negative indirect lights.

(a) (b)

Figure 7: Comparison of a (a) low resolution approximation for
all pixels and a (b) low resolution approximation for 87.5% of
pixels.

image quality can be found by adjusting the discontinuity thresh-
old. Using a low resolution approximation for all pixels, while
maximizing frame rate, results in visible artifacts, as seen in fig-
ure 7. But, rendering the scene without any optimization leads to
less than ideal frame rates. Notice that rendering with a low res-
olution percentage of 87.5% resulted in less than 0.2% error and
significantly faster frame rates when compared to rendering with-
out optimization.

6. CONCLUSION
Based on the work of Keller, we have presented a simple and

efficient technique for approximating indirect illumination in real-
time. Our algorithm exploits the performance capabilities of cur-
rent GPUs to achieve real-time performance when rendering com-
plex, dynamic scenes. We have introduced an image space, low-
discrepancy sampling technique for positioning indirect lights in
the scene. These indirect lights allow simulation of second-order
diffuse illumination. We described a technique, using negative
point lights, that provides a fast approximation of occlusion of the
second-order diffuse reflections. Finally, we provided an optimiza-
tion technique that approximates second-order diffuse illumination
at lower resolutions for less detailed areas of the scene. This pro-
vides improved frame rate while maintaining image quality.

Future work will focus on improving the performance and the
image quality of our results. Currently, we rely on low resolu-
tion approximations to attain real-time frame rates. While not ad-
versely affecting image quality, the efficiency of this method is
highly scene dependent. The computation time per frame is based
highly on the number of point lights (indirect lights and negative

indirect lights); therefore, techniques for reducing the computation
cost per point light are desirable. We feel that we can improve the
accuracy of our occlusion approximation while retaining its bene-
fits. Finally, we believe that distributing the workload to multiple
GPUs will allow us to simulate higher-order reflections, including
caustics, while maintaining our real-time performance.

7. ACKNOWLEDGMENTS
We would like to thank NVIDIA for partial support of this re-

search through their Fellowship Program. We would also like to
thank our advisor, Dr. Robert Geist, for his suggestions and insight
throughout this process.

8. REFERENCES
[1] M. Bunnell. Dynamic ambient occlusion and indirect

lighting. In M. Pharr, editor,GPU Gems 2, chapter 14, pages
223–233. Addison Wesley, Mar. 2005.

[2] G. Coombe, M. J. Harris, and A. Lastra. Radiosity on
graphics hardware. InGI ’04: Proceedings of the 2004
conference on Graphics interface, pages 161–168, School of
Computer Science, University of Waterloo, Waterloo,
Ontario, Canada, 2004. Canadian Human-Computer
Communications Society.

[3] C. Dachsbacher and M. Stamminger. Reflective shadow
maps. InSI3D ’05: Proceedings of the 2005 symposium on
Interactive 3D graphics and games, pages 203–231, New
York, NY, USA, 2005. ACM Press.

[4] C. Dachsbacher and M. Stamminger. Splatting indirect
illumination. InSI3D ’06: Proceedings of the 2006
symposium on Interactive 3D graphics and games, pages
93–100, New York, NY, USA, 2006. ACM Press.

[5] P. Dutr, P. Bekaert, and K. Bala.Advanced Global
Illumination. A K Peters, Natick, USA, 2003.

[6] C. Goral, K. Torrance, D. Greenberg, and B. Battalie.
Modeling the interaction of light between diffuse surfaces. In
Proc. SIGGRAPH ’84, pages 213–222, July 1984.

[7] H. W. Jensen.Realistic Image Synthesis Using Photon
Mapping. A.K. Peters, Natick, MA, 2001.

[8] A. Keller. Instant radiosity. InProc. SIGGRAPH ’97, pages
49–56, August 1997.

[9] B. Segovia, J.-C. Iehl, R. Mitanchey, and B. Péroche.
Non-interleaved deferred shading of interleaved sample
patterns. InProceedings of SIGGRAPH/Eurographics
Workshop on Graphics Hardware 2006, 2006.

[10] E. Tabellion and A. Lamorlette. An approximate global
illumination system for computer generated films.ACM
Trans. Graph., 23(3):469–476, 2004.

18

